
 
 

 

  

Abstract--This study develops an on-board decision 
module to issue appropriate warnings when the equipped 
vehicle’s traveling track is irregular. While a vehicle is 
running on a road, there is a potential danger of accidents if 
the driver is distracted by fatigue, drowsiness, food, talk, or 
influenced by alcohol or drug, etc. Common types of 
accidents that take place on a freeway are lateral and 
rear-end collision. Therefore, measuring vehicle behavior is 
a way more relevant in terms of ensuring the security of 
driving behavior. This study presents two modules: one for 
detecting irregular tracking and the other for measuring 
longitudinal relationship with the preceding vehicles. 
According to the simulations, the proposed modules are 
satisfactory. 

I. INTRODUCTION 
In the past decade, the number of motor vehicles in 

developing countries is increasing a lot. Official 
investigation reports of traffic accidents pointed out that 
dangerous driving behavior, such as drunk and drowsy 
driving, account for a high proportion among all the accident 
causes. In order to avoid these kinds of unexpected 
accidents, it is necessary to develop an appropriate 
in-vehicle system with warning modules that can directly 
improve driving safety. 

Some studies concentrated on developing a warning 
system that equipped with a CCD for monitoring driver’s 
behavior, particular on the variation of driver’s eyes. 
However, almost all drivers dislike equipping such an 
eye-like CCD that directly looks at their bodies all the time. 
Although current technologies have been improved, an 
on-board unit is indeed difficult directly to understand the 
driver’s behaviors. Consequently, detecting “vehicle 
behavior” is used to replace monitoring driver’s behavior. 
Developing a monitoring and warning system focusing on 
vehicle behavior is valid rather than driver behavior. 
Vehicle behavior herein means moving track and velocities 
(including longitudinal and lateral information), and these 
can reflect the prospective danger specifically.  
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An important concept is that vision can provide the most 
sufficient and useful information. Consequently, this study 
develops a vision-based system for detecting the equipped 
vehicle behavior. In other word, image processing is 
selected to collect and provide the required parameters for 
measurement. After shooting the scene right in front of the 
equipped vehicle, the image processing equipment produces 
the data for the measurement of the equipped vehicle’s 
moving track, including lane position and vehicle speed 
relative to obstacles (e.g. the preceding vehicles). In 
accordance with the information from image processing, the 
decision strategies are composed of “Fuzzy Neural 
Networks” which identify whether the vehicle is about to 
depart the lane or collide with anything ahead.  

II. UNEXPECTED LANE DEPARTURE AVOIDANCE MODULE 
A. Module and Practice Description  

When a vehicle is traveling on a highway, unexpected 
lane departure caused by the driver’s distraction or any 
irregular driving behavior might result in a lateral or 
rear-end collision. Unexpected lane departure incidents are 
relatively more abstract than rear-end collision accidents, 
because there is too varied to organize the phenomenon 
mathematically and specifically. The lateral displacement (lv) 
and lateral velocity (u) are herein the only principal 
components utilized for the evaluation to unexpected lane 
departure. 

This module deals with the dangerous conditions of 
unexpected lane departure into three levels: safety, caution, 
and danger. A Radial Basis Probability Network (RBPN) is 
applied to classify the three levels of warning. RBPN is a 
kind of universal approximator which output can 
approximate any continuous function. Before starting to 
identify the dangerous levels of lane departure, there is 
another issue to overcome: the distinction between lane 
change and unexpected lane departure. Without doubt, the 
turning signal must be actuated while a driver is trying to 
change lanes. While the equipped vehicle is approaching 
lane marking, this module begins to determine the warning, 
if the driver does not apply the turning signal. To find out the 
possible traveling patterns of lane change and unexpected 
lane departure, a series of video files captured in an 
equipped vehicle traveling on a freeway are conducted for 
the sequential training, simulation, and analysis. Neither 
lane change nor unexpected lane departure occurs instant- 
aneously. There should be a period of time before becoming 
the incident pattern. The data of 5 seconds (about 15 frames) 
before lane change or unexpected lane departure taking 
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place are employed to process the decision in RBPN. 
The lateral displacement and lateral velocity measures of 

5 seconds before each lane change and unexpected lane 
departure are applied for judgment of warning. There are 7 
scenarios of video for RBPN training “right lane change” 
(including real lane change and unexpected lane departure) 
and 5 scenarios for simulation. The simulating output is 
shown in Table I. However, scenario RULD-s3013 fails at 
lane change determination, since its traveling pattern is 
much similar to real lane change scenario RLC-s1001. In 
further analysis between RULD-s3013 and RLC-s1001, the 
statistical determination coefficient (R2) is 0.9934 for lateral 
displacement and 0.9555 for lateral velocity, respectively. 
To avoid such confusion, drivers should activate the turning 
signal before lane change; otherwise, for security the 
module will issue a warning even if the vehicle is just 
changing lanes. 

By higher sampling rate and lower-pass interpolation, the 
data of lateral displacement and lateral velocity of the 
equipped vehicle are more complete and robust. This helps 
to build more reliable and precise criterion to distinct lane 
change from unexpected lane departure. Applying RBPN to 
process the image and data, the decision zones are illustrated 
in Fig.1. The white zone means “safe”, not to launch any 
warning; “gray zone” means “cautious”, to issue a blink 
signal to the driver; and the dark zone means “dangerous”, 
to activate an alarm. From the white portion to the dark of 
the figure, it reveals that the more lateral displacement with 
higher lateral velocity, the more likely unexpected lane 
departure. 

A regularized lane width is 3.6 meters, and the equipped 
vehicle is 2 meters wide. The lateral gap from the vehicle 
edge to the lane marking is 0.8m. This indicates that the 
vehicle will across the lane marking if the lateral 
displacement is approaching to +0.8m. If the equipped 
vehicle’s traveling dynamics is dropped at the star icon in 
the upper right-hand corner illustrated in Fig.1, the module 
can immediately determine what dangerous departure level 
the vehicle is standing. In this case, the equipped vehicle has 
about 1 meter of lateral displacement and about 0.05 m/s of 
lateral velocity, and reveals the vehicle already in dangerous 
situation. Because it takes a period of time to indicate 
traveling pattern whether a vehicle is approaching lane 
change or unexpected lane departure, this study takes 5 
seconds for neural traveling pattern recognition. There are 
three frames for processing in each second. When the 
equipped vehicle’s lateral displacement and lateral velocity 
are detected dropping into the dangerous zone shown in 
Fig.1, the module will keep measuring the next frame. If the 
lateral displacement of the following frame is larger than the 
previous one, the equipped vehicle is tending to possible 
departure. When such an event is lasting to the fourteenth 
frame, the module is then to determine the vehicle being lane 

change or unexpected lane departure. If the determination 
output is “lane change” and the driver does not evoke the 
turning signal, the module immediately issues a warning for 
security. Also, the module will decide the warning level 
based on the lateral displacement and lateral velocity of the 
15th frame if the output is not “lane change”. 
B. Result  

Based on the module, the equipped vehicle’s lateral 
displacement tracking and the corresponding warning in a 
certain practical case are shown in Fig.2. The upper plot 
shows the lateral displacement tracking, the middle plot 
shows the corresponding warning level detected for each 
collected image frames, and the bottom one shows the actual 
warning issued. 

The module always keeps determining the danger level 
based on the equipped vehicle’s location while traveling on 
the freeway. Thereby the “danger detection” keeps showing 
in the middle plot of Fig.2. However, it is only a threshold 
for the timing to activate the comprehensive departure 
determination, not the actually appropriate warning. Until 
the equipped vehicle is judged tending to depart the lane, the 
actual warning is issued then. From the bottom plot, it is 
clear that actual warning signals are more specific with less 
noise, and the warning levels are clarified. Even if the 
vehicle is detected in a danger zone initially, the module will 
not issue any warning if the vehicle is not judged tending to 
depart. This mechanism can avoid disturbing the driver with 
over sensitive warning. 

III. REAR-END COLLISION AVOIDANCE MODULE 
A. Decision Strategy 

To find out the real-time warning value for rear-end 
collision avoidance, there are two parameters from distance 
-to-collision and time-to-collision algorithms for neural 
networks input. On the other hand, as the vehicle is traveling, 
there should be a threshold to reflect the warning level by 
recognizing the warning value. This threshold may not be 
fixed all the time as traveling, fuzzy membership functions 
are therefore in charge of providing a series of variable 
threshold depending on certain environmental parameters. 

1) Parameter from Distance-to-collision Algorithm: 
Assume the scenario of which two vehicles in a platoon are 
initially traveling at almost the same speed. Through image 
processing, the relative speed (vr=v-vpreceding) could be 
obtained by the follower, the equipped vehicle. According 
to the sequential image data, the following vehicle can be 
measured approaching or leaving the preceding vehicle. 
Once the following vehicle is detected approaching the 
preceding vehicle, i.e. the relative speed is positive, the 
collision avoidance module will be triggered to issue 
warning or not. Based on distance-to-collision, the warning 
should be issued at a proper and necessary timing that will 
not cause burden to the driver. According to Mazda and 
Honda’s algorithms [4], a warning value w was defined as 
w=(d-dbr)/(dw-dbr). Where, w is a non-dimensional warning 
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value; d is the real-time inter- spacing (relative distance); dbr 
is the non-conservative braking critical distance; dw is the 
conservative warning critical distance (in meters). A 
threshold defined “a=0.2” to point out the critical value of w 
for determining if it is necessary to issue a warning. When 
w>1 or a<w<1, the following vehicle is on safe traveling. 
Otherwise, w<a means that the actual distance is very close 
to the braking distance, and then strong warnings is needed 
to issue to the driver. The main mechanism of distance-to- 
collision is to keep “w” updating all the time. 

2) Parameter from Time-to-collision Algorithm: 
Time-to -collision concentrates on the mutual situations in 
terms of time orders between the following and preceding 
vehicles. The relative stopping dynamics begin at time t=0, 
when the preceding vehicle first applies its brake and starts a 
constant deceleration to zero speed, how immediately the 
velocity reaches zero is indicative of whether deceleration 
comes suddenly or gradually. The application of the 
preceding vehicle’s brake determines the location of the 
reference for the measurement of all parameters, and this 
reference point is the location of the following vehicle front 
bumper at the instant that the preceding vehicle begins to 
brake. There are three given parameters for measurement, 
the initial speed (V0, the same for both vehicles), the initial 
headway between the two vehicles (Th=R0/V0, R0 is the 
initial spacing), and the level of deceleration taken by the 
preceding vehicle (Dp, presumed to be a constant value). 
Then, the priority warning critical distance, Rw, would be 
obtained. As for time-to-collision, the mechanism is to keep 
collecting the preceding vehicle’s speed, and since it begins 
to decelerate at time t=0, then the function starts working. 
Consequently, time for warning TW is used to figure out 
distance for warning. 

3) Fuzzy Weights for Variable Warning Threshold: 
Though there is a warning threshold “a=0.2” defined in 
distance-to-collision algorithm, it is not proper for all 
traveling conditions. Since many factors may influence a 
driver’s behavior and habits to keep security conditions on a 
road, the warning threshold can not be fixed all the time. 
Two stated algorithms did not discuss about the 
environmental effects. To avoid rear-end collision, there are 
three factors used to interpret this situation: Relative 
distance, Rain, and Vehicle numbers in front. Drivers would 
adjust their awareness with these three varying factors, and 
the warning threshold would be variable with the varying 
warning weights. The shorter relative distance, heavier rain, 
and more vehicles ahead, the higher potential hazard exists. 
Fuzzy membership function is applied to figure out the 
weight for the warning level on different conditions [4]. The 
fuzzy sets are labeled with the linguistic terms of very close 
(VC), short distance (SD), large distance (LD), and far 
distance (FD). The fuzzy sets for rain (r) are no rain (NR), 
light rain (LR), heavy rain (HR). The fuzzy sets of the 
vehicle numbers (VN) ahead are few vehicles (FV), more 
vehicles (MV), lots of vehicles (LV). Moreover, there is 
planned an output to the weight of the warning (Ww). For 

this non-dimensional value, the fuzzy sets are small positive 
(SP), medium positive (MP), large positive (LP), very large 
positive (VP). The fuzzy rules can be expressed by the form: 
{If d=E1 and r=E2 and VN=E3, Then Ww=E4}; where E1, 
E2, E3, E4 are fuzzy sets in the universe of discourse of d, r, 
VN, and Ww, respectively. The determine values of E1, E2, 
E3, E4 are derived from the fuzzy inference system using 
fuzzy and defuzzy method. 

Inputting the conditions of the three factors mentioned 
above, there is an example about the output (warning weight) 
of fuzzy membership function shown in Fig.3. With the 
varying relative distance in the upper plot, the ordinary 
warning weight in the middle plot is varying as well. The 
shorter the relative distance (inter-spacing) is, the higher the 
weights will be. In the bottom plot, the rain parameter is 
adjusted into 0.5 (light rain), and then the weights are raised 
generally to reflect that the driver should enhance their 
awareness for traveling in rain. 
B. Criteria for issuing a warning 

Going through the calculations above, several referable 
values could be obtained to decide whether to issue a 
warning or not. The major reference value w is resulted from 
the distance-to-collision algorithm. Besides, the 
time-to-collision algorithm figures out RW as an assistant 
reference value. In order to take more conditions in account, 
get more objective data, and take advantage of the merit of 
image processing, there should be certain additional 
parameters for learning and training source in the Neural 
Networks. Hence, the relative distance (d), the raining level 
(r), and the number of vehicles in the image sight (VN) are 
the other parameters for input layer. 

For neural networks training, firstly, the fuzzy 
membership functions will figure out the warning weight 
corresponding to the inputs of d, r and VN . Next, in fact, the 
relative distance is the most concerned factor among all the 
inputs. Thereby the warning value (w) resulted from 
distance-to-collision is employed as the networks training 
targets. If the relative speed (vr) is negative, the module 
won’t give any warning value. Conversely, the networks 
provide simulated new warning value (wn). Finally, a new 
weighted threshold (WT) for warning level determination 
comes from fuzzy membership functions 

In addition, time-to-collision algorithm is originally based 
on the assumption that the preceding and following vehicles 
are traveling with the same speed, and started to get RW 
instantly while the preceding vehicle’s deceleration is 
detected. Indeed, two vehicles seldom travel with the same 
speed on roads. Hence, to apply RW in this study, the 
warning distance from time-to-collision (RW) is outputted 
continuously once the relative speed (vr=v-vpreceding) is 
greater than zero. 
C. Result  

With the decreasing of relative distance and the 
increasing of relative speed, plus environmental parameters, 
the module could issue a warning if the warning value is 
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greater than the threshold. In the bottom plot of Fig.4, the 
dotted line is the variable threshold for warning and the 
other line is the actual warning value. From the 10th to 15th 
second, the module keeps issuing warnings as the warning 
value is over the threshold. Both the threshold and warning 
value become zero while the relative speed is negative, i.e., 
it’s not necessary to issue any warning when the following 
equipped vehicle is slower than the preceding one. Because 
the warning threshold is not a constant, thus 60% of the 
threshold is regarded as a critical boundary of “caution 
level” to be the secondary warning level. 

IV.  SCENARIO ANALYSES 
A. Unexpected Lane Departure Avoidance Module 

In order to assure the reliability of the modules, for 
ordinary traveling on the freeway, there is certain 
prerecorded video to proceed with scenario analyses. Some 
of the prerecorded information has been already taken for 
Neural Networks training and simulating, the others are 
about to be tested and analyzed below. Table 2 describes the 
training scenarios in advance. The experiments on the other 
scenarios, traveling conditions, and the analyses results are 
shown in Table 3.  

In accordance with the module determining the 
unexpected lane departure and danger level frame by frame, 
Table 4 shows the success rate of the image frames which 
are needed to be determined while the equipped vehicle is 
traveling on a freeway. There were a few failed frames in 
scenarios-3009, 3010, and 3019 that made the possible lane 
departure was regarded as lane change. However, the next 
frame of the failed one made the right determination 
immediately, so it still came out successfully. Scenario-3013, 
unfortunately, there were sequential four frames failed to 
determine the lane departure but regarded them as lane 
change. As stated above, this must be solved by whether the 
turn signal is employed. Assuming that all the image 
processing works well, the accurate successful rate in these 
scenario analyses is 85.71%. With the turn signal employing, 
the module can overcome the failed determination to make 
successful results. 
B. Rear-end Collision Avoidance Module 

Table 5 shows the simulation scenarios for the rear-end 
collision avoidance module. During the following 
processing, the equipped vehicle might be overtaken, thus 
the spacing had decreased suddenly and a warning was 
needed, as shown in scenario-3009. Besides, the rain 
condition would affect the driver’s awareness about the 
traffic as scenario-4009. As mentioned in last section, all the 
scenarios are picked with successful image processing. 
Table 6 shows the results of rear-end collision avoidance 
scenario analyses. All the warnings were issued before the 
actual braking. In scenario-3005, the timing gap is 6 seconds. 
Actually, for video recording, the equipped vehicle braked 
while it was very close to the preceding vehicle, as shown in 
Fig.4. It should slow down at the 10th second; the warning 

was not issued too early. The accurate successful rate in 
these scenario analyses is approximately 100%. 

V. CONCLUSION 
In this study, two security modules about intelligent 

vehicles are developed. The unexpected lane departure 
avoidance module is applied to prevent lateral collision. The 
rear-end collision avoidance module, as implied in the name, 
can prevent colliding with a preceding vehicle or an obstacle 
ahead. 

As the states, the module for Unexpected Lane Departure 
Avoidance, the accurate successful rate is about 85.71%. If 
with turning signal consideration, the module can have 
higher successful results. The module for Rear-end 
Collision Avoidance has 100% successful rate. These 
conclude that the proposed modules are satisfactory. 
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TABLE I 
“RIGHT LANE CHANGE” DETERMINATION OUTPUT FROM RBPN 

Scenario Componen Result Outpu Comment 
RLC-s3015 Lv, u LC correct 

RULD-s1002 Lv, u ULD correct 

RULD-s3010 Lv, u ULD correct 

RULD-s3013 Lv, u LC (failed) 
Similar to lane 

change 
RLC-s1001

RULD-s3019 Lv, u ULD correct 

LC: lane change; ULD: unexpected lane departure; RLC: right lane 
change; RULD: right unexpected lane departure;  lv and u :lateral 
displacement and lateral velocity of the equipped vehicle 
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TABLE VI     RESULTS OF REAR-END COLLISION AVOIDANCE SCENARIOS ANALYSES 

Scenario Time Climate Incidents Actual Timing 
for Brake (sec)

Timing for 
Warning (sec) 

3005 day cloudy following 16th 10th 
3008 day cloudy following 15th 14.2th 
3009 day cloudy interrupted 19th 18th 
4009 day rain  1.5th, 29.5th 0.4th, 28.3th 

TABLE V     DESCRIPTION OF SCENARIOS FOR REAR-END COLLISION AVOIDANCE 
Scenario Time Field Climate Traffic Condition Incidents 

3005 day freeway cloudy in a platoon following 
3008 day freeway cloudy in a platoon following 
3009 day freeway cloudy in a platoon interrupted 
4009 day freeway rainy in a platoon following 

TABLE IV     SUCCESSFUL RATE OF EXPERIMENTAL SCENARIOS TESTS 

Scenario Time Traffic Condition Total Times 
(sec) 

Frames Need to 
Be Determined 

Failed 
(frame)

Success 
(%) Comment 

1002 day in a platoon 28 13 0 100.00  
1008 night in a platoon 30 16 0 100.00  
3009 day in a platoon 36 15 1 93.33 success 
3010 day free flow 34 10 1 90.00 success 
3013 night free flow 33 10 4 60.00 failed to warn
3014 night in a platoon 32 18 0 100.00  
3019 night in a platoon 34 12 1 91.67 success 

 

TABLE III     DESCRIPTION OF TESTING SCENARIOS FOR UNEXPECTED LANE DEPARTURE  

Scenario Time Field Climate Traffic Condition Unexpected lane departure 
direction Warning Result 

1002 day freeway sunny in a platoon right successful  
1008 night freeway -- in a platoon Left, right successful 
3009 day freeway cloudy in a platoon approaching left successful 
3010 day freeway cloudy free flow right successful 
3013 night freeway -- free flow right failed 
3014 night freeway -- in a platoon approaching left successful 
3019 night freeway  -- in a platoon right successful 

 

TABLE II     DESCRIPTION OF TRAINING SCENARIOS FOR UNEXPECTED LANE DEPARTURE  
Scenario Time Field Climate Traffic Condition Incidents 

1001 day freeway sunny free flow right lane change 
1002 day freeway sunny in a platoon right lane departure 
1003 day freeway sunny in a platoon right lane change 
1004 day freeway sunny in a platoon Right/left lane departure  
1005 day freeway ramp sunny in a platoon right lane departure 
3001 day expressway cloudy in a platoon left lane change 
3003 day freeway cloudy in a platoon right lane departure 
3004 day freeway cloudy in a platoon right lane departure 
3006 day freeway cloudy free flow right lane change 
3012 night freeway -- free flow left lane departure 
3013 night freeway -- free flow left lane departure 
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 Fig. 1  Lane determination zones resulted from RBPN 

 
Fig. 2  Vehicle’s lateral displacement vs. dangerous detection and actual warning 

 
Fig. 3  Warning weights with fuzzy membership function 

 
Fig.4  Warning result of rear-end collision avoidance module 
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