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Abstract— We present a real-time monocular vehicle detec-
tion and recognition system for driver assistance based on the
fusion of data from a radar and a video sensor. The radar
data is used both for narrowing down the size of the search
area for vehicle rears on the video image and for the distance
measurement of the vehicles in front. Using the passive video
sensor a radar object is verified and the width as well as the
lateral position of the vehicle are determined.
The contribution of this work is threefold: At first, we present
and apply a methodology for developing a novel evolutionary
optimized symmetry measure. Secondly, we demonstrate a vehi-
cle detection and recognition algorithm consisting of two steps:
hypothesis generation using a detector based on a set of Haar-
like filters and an AdaBoost learning algorithm and hypothesis
verification using an evolutionary optimized and biologically
motivated vehicle recognition system. Finally, the performance
of both the individual components and the complete vehicle
detection and recognition system is evaluated by not only using
classical confusion matrices but also giving information on the
accuracy of the width and lateral position sensing.
Our experimental results demonstrate a robust and real-time
system trained and tested on more than 30,000 images.

I. INTRODUCTION

Driver assistance systems account for many different pre-

ventive safety functions in modern automobiles. Two of the

most promising sensors for accomplishing such functions are

the radar and the video sensor. While the use of radar sensors

is already quite common within the luxury vehicle class, the

incorporation of video sensors is still a very vigorous area of

current research. An interesting approach is the fusion of the

radar and video data, since it can provide several advantages:

in particular improved reliability through detections from two

independent sensors and the combination of the very accurate

distance measurement by the radar sensors with the good

lateral position accuracy obtained from the video processing.

In this work we will present a vehicle detection system, that

uses the advantages of both sensors through sensor fusion

in order to achieve a more robust detection while compen-

sating for limitations of each individual sensor. Generally,

visual vehicle detection systems have high computational

requirements as they need to process the acquired images

at real-time. For the purpose of saving computation time

in many cases two basic steps are used for the vehicle

detection: 1) Hypothesis Generation (HG), in which the

locations of possible vehicles in an image are hypothesized

and 2) Hypothesis Verification (HV), in which tests are

performed to verify the presence of vehicles on the found

hypothesis [9].

There exist many different ways for performing the HG-

step and in [9] the approaches are classified into three cate-

gories: 1) knowledge-based, 2) stereo-based, and 3) motion-

based methods. Among the knowledge-based methods a quite

common technique in the literature is to take advantage

of the symmetric properties of vehicle rear views. In most

cases, the hypothesized symmetry axis is used as a starting

point for further processing. Following this approach once

the symmetry axis has been found, in [8] the symmetric

contours of the vehicle are followed out to their left- and

rightmost bounds in order to determine the width of the

detected object. In [18], a symmetry enhancing edge detector

is developed based on a symmetry operator and used to

identify the object contours. Through a search for strong

vertical edges within the same distance to the hypothesized

symmetry axis the vehicle borders are acquired in [1], [4],

[2]. The work from Broggi et al. [5] uses edge symmetry for

both determining the lateral vehicle position and for finding

the vehicle’s width through applying different sized search

windows for the symmetry operator. Similar to [5] the work

in [3] uses an edge symmetry detector for identifying the

lateral vehicle position and its width while also exploiting

information from the on-board radar sensors. In [15] the

horizontal and vertical edge images are used to hypothesize

a vehicle position, which is validated through a symmetry

operator.

The step for the verification of the generated hypothesis

(HV-step) can also be arranged through a big variety of

possible methods. Again, an extensive review of template-

and appearance-based methods can be found in [9]. It is hard

to draw any conclusions by comparing the recognition results

since all methods were tested on different sets of testing

data. Nevertheless, considering only the test results on the

respective test data, very good results for the recognition of

vehicles in the HV-step could be achieved by using Haar

wavelets and Gabor filters for generating features within the

classification procedure. For instance, Haar wavelets have

been used with much success in [10] and [11]. In [10], the

detection rate approached 100% when the false positive rate

was close to only 1 percent in the ROC curve. According to

[9], the best results using Gabor filters was achieved within

the work in [14], where a classification performed using

support vector machines yielded an accuracy of 94.81%.
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II. PROBLEM AND SETUP

For the purpose of detecting vehicles and determining

their position, our experimental vehicle was equipped with

a long range radar sensor behind the radiator grill and two

short range radar sensors on the left and right front of the

car. Furthermore, a monochrome video camera was installed

behind the windshield close to the rear mirror.

The data from the radar sensors can be well exploited for the

detection of vehicles in the video image by narrowing down

the size and position of the search area in the video image. In

order to compensate for the technically inherent longitudinal

and lateral variance of the radar point in the video image,

the search area for the vehicle detection in the video image

has to be chosen quite generous as it has to be made sure

that a full rear view of the vehicle to be detected is always

included. With the radar point projected onto the image, we

chose a total height of four meters and width of five meters

(in the respective distance determined by the radar sensor)

for the size of the search area. This 5x4 meter sized search

area is then used for the HG-step of the video processing.

In order to fully understand the following sections, it is

important to take a look at what data we used throughout

our work. All training and testing data was generated from

several recorded driving videos using the radar and video

sensor described above. On each 5x4 meter sized search area

on the whole video image around the radar reflex the exact

position of the vehicles was marked by hand. In case there

was a (negative) radar reflex (e.g. caused by the guardrail)

a 2x2 meter sized box around the radar reflex was marked

by hand. Additionally, one of the three class labels CAR,

TRUCK and NEGATIVE was added to the marked position.

All methods described in the following sections on the HG-

step used the marked and labeled 5x4 meter sized images and

all methods on the HV-step used the exactly cut out vehicle

images derived from the marked position on the 5x4 meter

sized image, respectively.

III. EVOLUTIONARY OPTIMIZED SYMMETRY

A. Symmetry Measures

A discrete one-dimensional image intensity function may

be denoted by f (x) (for the two-dimensional case the one-

dimensional symmetry values for each line are just added

up). Furthermore, let b denote the width of each line of the

input image, which leads to a domain of x ∈ [1,b]. Let the

variable w ∈ N with w <
1
2
b denote the search window for

the symmetry axis. The position of a symmetry axis may be

defined by xs ∈ N with w < xs ≤ (b−w).

1) Gray-Level Symmetry without contrast normalization:

The most intuitive and easiest way to calculate a symmetry

measure for the given 1D intensity function f (x) is just to

subtract the symmetric intensity values and add up the results

for all possible distances from the hypothesized symmetry

axis. Hence, the value of xs that belongs to the minimum of

Sg(xs,w) =
w

∑
x=1

| f (xs − x)− f (xs + x)| (1)

would describe a possible location of a symmetry axis within

f (x).

2) Gray-Level Symmetry with contrast normalization: A

drawback of the symmetry measure introduced above is its

sensitivity with respect to different contrast conditions. That

is, a dark object on a bright background would yield a much

stronger extremum in equation (1) than a brighter one [17].

In [18] a symmetry measure is introduced that takes these

observations into account as well. Let

G(x,xs,w) =

{
1
2
( f (xs + x)+ f (xs − x)) , for 1 ≤ x ≤ w

0 ,otherwise

(2)

denote the even part of function f (x) and

U(x,xs,w) =

{
1
2
( f (xs + x)− f (xs− x)) , for 1 ≤ x ≤ w

0 ,otherwise

(3)

denote the odd part, respectively. According to [18], with

the normalized even function (normalized by subtracting the

mean value)

Gn(x,xs,w) = G(x,xs,w)−
1

w

w

∑
x=1

G(x,xs,w), (4)

the complete symmetry measure for function f (x) is defined

by

Sgc(xs,w) =
∑

w
x=1 Gn(x,xs,w)2 −∑

w
x=1 U(x,xs,w)2

∑
w
x=1 Gn(x,xs,w)2 + ∑

w
x=1 U(x,xs,w)2

. (5)

3) Edge Symmetry: Edge-based symmetry measures usu-

ally work on binarized edge images. In this paper edge-

based symmetries using the binarized horizontal and vertical

edge image as well as the binarized gradient image will be

used. Since all symmetry measures using these input images

are very similar, for simplicity reasons, edge symmetry will

here only be formally introduced using the horizontal edge

image. Let Eh(x) be the binarized one-dimensional horizontal

edge image generated from f (x) using threshold θh. For

calculating the horizontal edge symmetry measure we need

a help function that determines, whether two pixels in the

same distance from a given symmetry axis are symmetric:

Sp
e (xs,dw)=

{
1 , if Eh(xs + dw) = 1 and Eh(xs −dw) = 1

0 ,otherwise
,

(6)

where dw denotes the distance from the position of the

symmetry axis xs. With S
p
e it is now possible to define an

edge symmetry measure similar to [5] for the horizontal edge

image through

Se(xs,w) =

(
∑

w
dw=1 S

p
e (xs,dw)

)2

∑
xs+w
xh=xs−w Eh(xh)

(7)

In words, the symmetry is computed as the ratio between

the square of symmetric edges and all edges present in the

considered search window.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. The seven symmetry measures used in this work: (a) gray-level
symmetry with contrast normalization; (b)-(d) gray-level symmetry without
contrast normalization on the unthresholded horizontal, vertical and total
gradient image; (e)-(g) edge symmetries on the binarized horizontal, vertical
and total gradient image

B. Evolutionary Optimization

When taking into account that all (not only the edge sym-

metry) of the introduced symmetry measures above can be

applied using different transformations of the original image

function (e.g. the unthresholded gradient image), the question

arises quickly, what symmetry measure in combination with

what transformation works with the highest accuracy for our

given task.

In order to achieve a more robust symmetry measure, in

[2] gray-level symmetry as well as horizontal and vertical

edge symmetry is added up to form a new combined sym-

metry measure called total symmetry. However, the question

whether these three single symmetry measures are appropri-

ate, whether and how each of these single measures should

be weighted, and how the internal parametrization should be

chosen (e.g. thresholds) remains unanswered.

In order to answer these questions in this work a total

number of seven different symmetry measures are combined

and several parameters of this combination are evolutionary

optimized. Figure 1 shows all seven different symmetry

measures. Note that no contrast normalization is used on

the input images in figures 1b-d, since regions with intense

contrast stand for strong edges and this should be emphasized

by the symmetry operator.

Additionally, for each of these seven symmetry operators,

the results of each line symmetry is weighted. Even though

it is possible that the transformation of radar coordinates

into image coordinates is not always correct due to external

factors like the vehicle pitch, it is very likely that the vehicles

are always within a certain sub-frame of the input image. In

order to investigate this assumption, we assessed how often

each line of the 5x4 meter sized sub-image actually contains

a part of the vehicle rear and used the resulting distribution

for our weighing process.

For simplicity, the seven symmetry operators described above

will be henceforth denoted by S1 through S7. The final

combined symmetry measure Sopt is the weighted sum of

S1 through S7 and thus the position of the symmetry axis x̂s

using that operator can be defined by

x̂s = posmax (Sopt(xs,w)) = posmax

(
7

∑
i=1

ciSi(xs,w)

)
(8)

where the function posmax denotes the position of the maxi-

mum value and the c1, . . . ,c7 are the weights for each sym-

metry measure (∀ ci, i ∈ {1, . . . ,7} : 0 ≤ ci ≤ 1 and ∑
7
i=1 ci =

1). Additionally, the search window size w as well as

appropriate thresholds for the binarized horizontal, vertical

and total gradient images need to be chosen. Let these four

variables be denoted by c8 through c11. Since all of our data

is marked with the correct position of a symmetry axis with

respect to the vehicle rear, it is possible to calculate the

deviation of the calculated symmetry axis x̂s from the by

hand labeled symmetry axis x∗s for a given input image I:

dsymm(c1, . . . ,c11, I) = abs(x̂s − x∗s ) (9)

With nI labeled input images, it is desirable that

F(c) =
1

nI

nI

∑
i=1

dsymm(c, Ii)
2 → min (10)

where c = (c1, . . . ,c11). For instance, if F(c) = 0, the com-

bined symmetry measure Sopt would always return the exact

symmetry axis of the vehicle rear as marked on all test

images. In our work, we used (10) as the target function

for an evolutionary optimization algorithm using evolution

strategies. For a good introduction on such optimization

procedures see [6].

IV. HYPOTHESIS GENERATION

Within the HG-step it is important that the hypothesized

positions of vehicles are as exact as possible, since an

inaccurate position (e.g. a cut-off vehicle) will directly reduce

the classification performance of the following HV-step. On

the contrary, it is allowed to hypothesize some non-vehicles

(false positives), since these should be classified into the

negative class in the next step. However, if the amount of

false positives is too big, the computation time increases

rapidly.

We found that many low level hypothesis generation meth-

ods like searches for specific edges and corners or solely

symmetry considerations are too inaccurate and deliver too

many hypothesized vehicle positions. In fact, when there are

many objects and shadows present in the image, our studies

have shown that such methods even loose their applicability,

since the overall detection and recognition rate went below

45%.

For the purpose of hypothesis generation, we mainly follow

the approach used in [16]. That is, image regions are de-

scribed by their responses under a family of Haar-like filters

which are sensitive for instance to the presence of horizontal

and vertical bars. Using this description a learning algorithm,

based on AdaBoost, is applied yielding extremely efficient
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Fig. 2. The four steps of our HG-step: (a) finding all possible vehicle
positions using a detector based on a set of Haar-like filters and an AdaBoost
learning algorithm; (b) clustering of the results; (c) cluster-selection based
on our evolutionary optimized symmetry measure; (d) final result

vehicle detectors. Thus, our HG-step already includes a fully

functional vehicle detector with the nice property of very

high detection rates, if the detector’s parameter set allows

some false positive detections.

In addition, we improved the performance by exploiting in-

formation from the optimized symmetry measure introduced

in the previous section. In more detail, the full HG-step

includes the following four subordinate processing steps.

The first step is to find all positions of vehicles, that might

contain a possible candidate for the HG-step. The input

to this processing is the 5x4 meter sized sub-image as

described in section II. Furthermore, it is possible to exploit

the additional information from the radar sensor. That is,

we can look for only reasonable rectangles. Reasonable in

this context means, that we can set a minimum width of

the hypothesized rectangles to 1.5 meters (in the respective

distance determined by the radar sensor). Figure 2a shows

the result of our vehicle detector, which was developed using

the learning algorithm, based on AdaBoost, as described in

[16].

The result of the previous step yields many detections,

especially at almost the same positions. Thus, the output

of the previous step cannot be used as immediate result.

Within our second step, we use a hierarchical clustering

approach with an appropriate threshold in order to cluster

the set of hypothesized vehicle positions. From each cluster

subset we only take the average rectangle for the further

processing. Figure 2b shows the resulting average rectangles.

The numbers in the upper left corner depict the number of

rectangles in the respective cluster.

The number of rectangles in a cluster is a good indicator

of the detectors confidence and thus might be taken as

decision rule for picking the right cluster as hypothesized

vehicle position. However, this might not always result in

a correct hypothesis. As in the example of figure 2b there

are more rectangles in a wrong cluster due to effects (e.g.

shadows) that interfere with the detection result. In order to

solve this problem, we use the optimized symmetry operator

Sopt within our third processing step. For that purpose the

number of elements in each cluster is multiplied with the

value of the symmetry operator at the respective position.

The resulting highest score from this operation determines

the target cluster. Figure 2c illustrates this processing.

Within our fourth processing step, the average rectangle of

the target cluster from the previous step is considered as the

final single hypothesis. The corresponding sub-image is cut

out and passed on to the HV-step. Figure 2d shows the final

cut out vehicle rear.

V. HYPOTHESIS VERIFICATION

In [12], [13] an object recognition system is presented,

which solves the problem of object recognition using bio-

logical basic principals. In our work we used this recogni-

tion system for the HV-step. In essence, it is based on a

transformation of the image objects into a high-dimensional

feature space. Within this space, the classification is done by

using a nearest neighbor classifier. The main characteristics

of that approach are threefold. First, a fast processing with a

high accuracy. Second, the image features for the recognition

task are chosen by evolutionary optimization leading to

an optimal set of features for the given task. Lastly, the

recognition system is invariant towards small transitions of

the object to be detected. That is, if the previous HG-step

hypothesized a vehicle position with a slight offset, the

recognition system is able to classify the sub-image correctly.

VI. RESULTS

First, all introduced single steps of our vehicle recognition

system will be assessed one by one. That is, the optimized

symmetry, the HG-step and the HV-step will be evaluated

separately. Thereafter, the complete system using the HG-

and HV-step together is evaluated. If reasonable, the used

methods will be evaluated in regard to their correctness of

the position sensing and the determination of the vehicle

width.

A total of 1302 images including objects in a distance from

5 to 50 meters were labeled by hand into the classes CAR

(380), TRUCK (105) , and NEGATIVE (817). For the purpose

of simulating different rotations and displacements of the

elements a vehicle rear contains (e.g. license plates, tail-

lights, etc.) a total of 31248 images was generated using 23

different transformations including rotations, tilting, etc. Two

thirds of that data was used for the training of the classifiers

and the other third was used for all tests. Of course, the

realization of this split took into account that there have to

be no identical rear views of vehicles in either of the two

sets.

A. Evolutionary Optimized Symmetry

Table I shows the results of all symmetry measures

introduced in this paper. S8 is the total symmetry measure,
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which was introduced in [2]. For the generation of the

results of S1 through S8 the following parameters were

used. The size of the search window w was set to one

meter (in the respective distance determined by the radar

sensor) and all thresholds for the generation of the binarized

edge images were set to 30% of the maximum value in

the gradient image. The column with caption d denotes

the lateral deviation of the calculated symmetry axis from

the marked symmetry axis. Caption s denotes the standard

deviation of this lateral deviation. Both are given in pixels

and centimeters.

Leaving the evolutionary optimized symmetry measure

Sopt out of consideration, it can easily be seen that the

total symmetry measure achieves the best results. Hence,

it seems to be reasonable to combine different symmetry

measures. Our developed symmetry measure Sopt reduced

the deviation again by almost 50%! In the optimal setting

of the eleven parameters c1, . . . ,c11 the weight values of

the symmetry measures suggested that gray level symmetry

with contrast normalization on the original input image,

gray level symmetry without contrast normalization on

the unthresholded horizontal gradient image as well as

the edge symmetries on the horizontal and vertical edge

images are most important. In addition it was noticeable

that the threshold for the generation of the horizontal edge

image was quite low. This leads to the conclusion, that all

horizontal edges of vehicles, even the very weak ones, are

significant for the symmetry calculation. This is consistent

with the argumentation about the importance of horizontal

edges for the detection of vehicles in [7].

B. HG-step

Even though our hypothesis generation depends on both

the detection with Haar-like features and symmetry calcula-

tions, most of the quality depends on the performance of

the former. The ROC-curve of our Haar-detector for the

detection of vehicles of classes CAR and TRUCK showed a

true-positive-rate of 97.4% at a corresponding false-negative

rate of 2.6% and an average false-positive rate of 10%. In

addition, the already high true-positive-rate descends from a

quite strict criterion. If a found vehicle position deviates more

than half a meter (in the respective distance determined by

the radar sensor) from the correctly marked one, the vehicle

TABLE I

RESULTS FOR THE SYMMETRY MEASURES

symmetry measure d [px] s [px] d [cm] s [cm]

S1(xs,w) 9.7 13.0 46.9 63.4
S2(xs,w) 13.6 15.8 66.9 78.1
S3(xs,w) 14.9 12.7 73.3 62.9
S4(xs,w) 13.5 15.3 66.1 75.5
S5(xs,w) 9.9 12.7 48.0 62.2
S6(xs,w) 16.6 12.9 81.8 64.6
S7(xs,w) 10.7 12.6 52.2 61.8

S8(xs,w) 7.7 11.6 37.0 56.1

Sopt(xs,w) 4.5 8.5 21.3 40.3

TABLE II

WIDTH AND LATERAL POSITION SENSING OF THE HG-STEP

without symmetry
d [px] s [px] d [cm] s [cm]

lateral 5.4 13.4 15.5 36.9

width 7.8 12.4 19.8 24.3

with symmetry
d [px] s [px] d [cm] s [cm]

lateral 4.6 12.7 12.6 29.2

width 7.7 12.3 19.1 22.5

TABLE III

CONFUSION MATRIX OF THE HV-STEP

PREDICTED

NEGATIVE CAR TRUCK

NEGATIVE 92.3 5.1 2.6
ACTUAL CAR 4.2 94.2 1.6

TRUCK 15.3 17.8 66.9

rear view is considered as not found. The average false-

positive rate of 10% is not a problem, since most of the

false-positives will be classified into the negative class in

the following HV-step.

Table II shows the results for the width and lateral po-

sition sensing. The upper part of the table depicts the

results without usage of symmetry and the lower part takes

symmetry into account as described earlier. Clearly, when

taking our evolutionary optimized symmetry measure into

the HG-step, this has the biggest effect on the lateral position

measurement. Even though the width measurement became

better as well, the biggest improvement could be achieved at

the lateral position measurement with an about 20% better

position measurement.

C. HV-step

After the evolutionary optimization of the hierarchical

object recognition system from [12], [13] the confusion

matrix in table III shows the performance. With an accu-

racy of 94.2% for vehicles of the class CAR the classifier

performance belongs to the top results achieved so far in

the area of vehicle recognition (see [9] for a review). The

accuracy for the TRUCK class is lower, which is probably

the result of the following two reasons. First, the amount of

training data we were able to use was not as big as it was for

the class CAR. Second, the TRUCK-class possesses a huge

variety of different rear views, which makes the classification

task much more complex.

D. Complete Vehicle Detection and Classification System

The complete vehicle detection and recognition system

incorporates both the hypothesis generation and hypothesis

verification. This complete system will be evaluated by two

tables. The first is the classical confusion matrix, shown in

table IV. Obviously, the results are not as good as they were

in the separate evaluation of the HV-step, since the input is
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TABLE V

WIDTH AND LATERAL POSITION SENSING OF THE COMPLETE SYSTEM

PREDICTED

CAR TRUCK

d [px] s [px] d [cm] s [cm] d [px] s [px] d [cm] s [cm]

lateral 2.5 5.8 6.1 6.8 8.6 8.6 12.6 22.6
CAR

width 5.9 9.1 13.4 10.6 14.9 13.7 15.3 10.7
ACTUAL

lateral 10.7 28.1 36.1 34.1 2.6 5.5 12.2 32.0
TRUCK

width 15.1 19.2 58.1 47.4 5.1 5.5 20.5 18.5

TABLE IV

CONFUSION MATRIX OF THE COMPLETE SYSTEM

PREDICTED

NEGATIVE CAR TRUCK

NEGATIVE 80.2 15.1 4.7
ACTUAL CAR 7.3 90.3 2.4

TRUCK 27.4 19.5 53.3

not given by the perfectly cut out images of vehicle rears,

but the ones delivered by the HG-step. Of course, if the HG

is not able to hypothesize the position of a vehicle rear with

enough accuracy, this will reduce the quality of the HV-step.

Table V evaluates the width and lateral position sensing

of the detected and recognized vehicles of the complete

system. Here, the deviation of the calculated lateral position

from the marked one lies between 6-12 centimeters. The

correspondent deviations in pixels (2-3 px) is now in such

a small range, that even when marking vehicles by hand it

would be hard to tell a difference. The same applies to the

results for the class TRUCK.

VII. CONCLUSION AND FUTURE WORK

The goal of this work was to detect vehicles and determine

their position as well as their width using the combination of

a radar and a video sensor. For that purpose we developed

a new method of building a combined symmetry measure

using evolutionary optimization, which was able to reduce

the error rates on our test data by almost 50% compared to

the total symmetry. In combination with the new developed

symmetry measure, we built a complete vehicle detection and

recognition system, which yielded an accuracy of 90.3% for

the CAR class. The recognition system on exactly cut out

images even had an accuracy of 94.2%.

For the future work the most important step would be the

integration of a tracking procedure in order to save the

computation time of the HV-step. Also, it could be valuable

to include some results of the symmetry calculations into the

classification routine as an extra feature. The same applies

to the Haar-like features used in the HG-step.
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