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Abstract— This paper demonstrates the importance of creat-
ing an even playing field between weak classifiers and classifier
families in the RealBoost boosting algorithm. Classifier families
are constructed based on Haar-like features in various color
spaces, which are then trained simultaneously in RealBoost
to create a strong classifier rule. It is shown that the usual
method for minimising error at each RealBoost round may
express a bias against some weak classifier families. A particular
bias toward overfitting features is found. An initial method for
achieving parity between families of weak classifiers is applied
to improve classification.

Classification results for various groups of classifier families
are shown on pedestrian and sign detection tasks. Particular
attention is given to the effect of recently proposed model im-
provements, including response binning and smoothed response
binning. The final system yields significantly lower error rates
on classification tasks, and demonstrates the value of color
information within the context of the improved methods.

I. INTRODUCTION

Recently, many pattern recognition methods have been

introduced and applied to tasks, such as, face, pedestrian

or road sign detection. In particular, the works of Viola and

Jones [1] has led to a number of descendant methods based

on the popular Haar-like features. Many of these methods

improve classification by employing various additional cues,

such as, background motion [2] for pedestrian detection,

color characteristics for sign [3] or face detection [4], op-

tical flow and depth motion for human detection [5], and

histograms of oriented gradients for human detection [6].

More recently, Rasolzadeh et al. [7] has proposed im-

provements to the way the responses from Haar-like features

are modelled to form the weak hypotheses. This involves

a method of response binning to form a histogram-like

distribution of the positive and negative responses. A similar

use of histogram-like models is found in Liu et al. [8].

These models increase the discriminative power of individual

weak classifiers. Unfortunately, they are prone to overfitting.

Rasolzadeh’s [7] solution was to select a number of bins

for the models which minimises overfitting and underfitting.

Overett et al. [9] showed that such models may both overfit

and underfit at different sections of the model near and

far from the modal peaks. The proposed solution was to

smooth the response binned models based on the weight of

the training data represented in each bin. This allowed more

detailed models with more bins and further increased the

discriminative power of individual weak classifiers.

Both [7] and [9] used the real-valued variant of AdaBoost,

which is generally called RealBoost. This replaced the binary

thresholding method in AdaBoost to incorporate a real-

valued confidence measure as proposed by Schapire et al.

[10]. RealBoost considers the confidence of a weak classifier

in a particular decision given a particular response.

It is the combination of the new Response Binning Method

(RB-method) and the Smoothed Response Binning Method

(SRB-method) with the real-valued confidence measures of

[10], which lead to the issues discussed in this paper. The

RealBoost algorithm assumes the validity of the confidence

measure, however characterised, in expressing confidences

which are at least valid comparable to each other. In other

words, RealBoost will choose classifiers appropriately iff the

classifiers can be meaningfully ordered in terms of their dis-

criminative confidence over the training set. This is usually

true when only one kind of classifier family is used. If two

classifier families are used (i.e, RealBoost has two families

of features to select from) and one family tends to overfit

more than the competing family then RealBoost will favour

the overfitting classifier family. To our knowledge, no prior

investigation of these issues has been conducted for such

feature families or model implementations in RealBoost.

This paper outlines an initial method for overcoming this

bias toward overfitting features and discusses some of the

major issues which need to be overcome to create a robust

solution to this issue.

Additionally, the richness of color information is explored

using the improved methods. An example, of color pedestrian

images from the training database is shown in Figure 1.

II. FAMILIES OF WEAK CLASSIFIERS

Families of weak classifiers are created to make up a

pool of classifiers with similar characteristics from which the

RealBoost algorithm will choose. The families are limited

to one color space and one method for constructing weak

hypotheses (one modelling method). We will consider the

subset of the families, supported by our experimental system.

These are produced by creating tuples of color space choice

with either the RB-method or SRB-method. Table I shows

the 8 families which are considered in this paper. More detail

on the families is covered below.

This selection of family boundaries is not necessarily

definitive. It is based on our experimental implementation
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Fig. 1. Unnormalised 32x80 color pedestrian images from the training
database.

TABLE I

8 WEAK CLASSIFIER FAMILIES

S LAB RGB rgb

RB-method SRB LABRB RGBRB rgbRB

SRB-method SSRB LABSRB RGBSRB rgbSRB

and consideration of the likely selection parity of the families

in RealBoost. For example, the RGB color space could be

further divided into Red, Green and Blue families.

A. Feature Types within Families

For simplicity, we limit all families to the five well

known Haar-like feature types, see Figure 2. These describe

horizontal and vertical edges and lines, as well as diagonal

lines [1].

Fig. 2. Haar-like Basic Feature types

B. Color Spaces

While many color spaces may be considered for recogni-

tion tasks, not all are suitable for fast real time evaluation

using precomputed methods such as the integral image and

Haar-like features. It is difficult, for example, to evaluate

the Hue values from the HSV color space using an integral

image. This is because the hue channel is circular and

evaluating a sum of hue values for an image region tells

us little about the ‘average’ hue in that region.

Thus, we constrain ourselves to the following color spaces:

1) S - greyscale intensity.

2) RGB - consisting of the usual Red, Green and Blue

color channels.

3) rgb - Intensity normalised values where r=R/S, g=G/S,

and b=B/S.

4) LAB - Uses the A and B color channels of the CIE

L*A*B* [11] color space and drops luminosity, which

is considered to be covered by the S (intensity) color

space.

C. Improved Models

Features such as those shown in Figure 2 produce a raw

feature response x by subtracting the sum of intensities in the

shaded region from the sum of intensities in the light region.

This is then compared to a trained model of the positive and

negative training sets which yield a final real-valued response

indicating the likelihood of a given outcome (a hypothesis

ht(x)). Figure 3 shows four possible methods of evaluating

a feature response.
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Fig. 3. Various Hypothesis Modelling Methods

1) Single Value Thresholding - This method uses a

single threshold to discriminate between the positive

and negative training sets. It relies on a difference of

means in the training sets.

2) Multi-Thresholding - This method uses two thresh-

olds to discriminate between outcomes. A discrimina-

tive result can still be found when modal peaks of the

training sets overlap (which Rasolzadeh [7] found was

often the case).

3) Response Binning - Here the raw feature responses

x, from training data, are placed into a histogram-like

model. This method tends to suffer from overfitting.

See 3a and 3b in Figure 3. More information can be

found in [7].

4) Smoothed Response Binning - This method takes

the model from the previous method and adaptively

smooths it based on the amount of training weight

represented in each region. This has the effect of

ensuring that no bin forms a hypothesis based on too

little training data. This method is outlined in [9].
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III. REAL-VALUED ADABOOST

In the Real-Valued AdaBoost system a confidence measure

is attained by taking the magnitude of the response to the

weak hypothesis. This is used to rank potential classifiers

and assemble a strong classification rule. This algorithm is

outlined in Algorithm 1.

trainClassifiers(X,Y, F ) :
X = {x1, x2, ..., xN}, the set of example windows

Y = {y1, y2, ..., yN}, yi ∈ −1, 1, are the corresponding

labels

F = {f1, f2, ..., fM}, the set of filters

D1(i) = 1/N
For t = 1, ..., T (or until the desired rate is met)

1) Train classifiers hj using distribution Dt. The classifier

takes on two possible values: h+ = 1
2 ln

(

W++

W+−

)

and

h− = 1
2 ln

(

W
−+

W
−−

)

for positive and negative examples

respectively. Wpq is the weight of the examples given

the label p which have true label q.

2) Select the classifier ht which minimises

Zt =

N
∑

i=1

Dt(i)exp(−yiht(xi)) (1)

3) Update distribution Dt+1(i) = Dt(i)exp(−yiht(xi))
Zt

The final strong classifier (cascade stage) is

H(x) = sign

(

T
∑

t=1

ht(x)

)

Alg. 1: RealBoost

Of particular interest to us is the feature selection in Step

2 (see Algorithm 1). Here the algorithm selects the classifier

ht which minimises Equation 1.
This selection criteria is shown in [10] to be an optimal

choice given the assumption that the confidence measure

ht(xi) is valid and the weights are distributed as per Step 3.

However, confidence measures are inherently flawed because

they are only based on training data and the success of the

modelling method used (see Section II-C). Some modelling

methods tend to overfit or underfit more than others. The

degree to which this happens is unique to the color space

used. It as also sensitive to the redistribution of weight during

each round and the difficulty of the ‘problem at hand’ in a

given round of the RealBoost algorithm.

A. RealBoost Bias Towards Overfitting Features

Consider what happens when RealBoost chooses between

two families of classifiers where one family (A) is overfitting

on the training data while the other (B) has a more repre-

sentative model of the real-world distribution. For overfitting

family A, the values of exp(−yiht(xi)) will be very small

thus lowering ZA
t for all possible t’s from set A. Alterna-

tively, the more representative models in set B will exhibit

higher values for ZB
t .

This effect can be most easily observed when we run Real-

Boost with two Families made up of the same feature types

and in the same color space but with the RB-method and

the SRB-method respectively. The RB method is known to

overfit while the SRB-method produces a more representative

model. Figure 4 shows the disparity between the potential

Zt values in features from the SRB and SSRB families

respectively. From this figure it is clear that the overfitting of

the SRB family clearly biases the RealBoost system toward

choosing the overfitting features.
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Fig. 4. Disparity between Zt scores from each of the 2 families. Plots are
made in the 1st and 60th training round to show how this disparity grows
during training. Greater detail of this changing disparity is found in Figures
6 and 7. Experimental parameters used are shown in Table II.

IV. CREATING PARITY AMONG FEATURE FAMILIES

Figure 5 shows a high-level schematic of the problem

RealBoost has in choosing features from multiple families.

Strong Classifier Rule

RealBoost

SRB LABSRB
SSRB

Low Zt High Zt
High Zt

Potential Features

Fig. 5. RealBoost Feature Selection. Optimistically low Zt scores in SRB

will create selection bias for this feature due to its greater overfitting.

A number of schemes may be used to create an even

playing field between classifier families. The most naive

approach would be to estimate the average overfitting and

its effect on Zt scores between two families and apply some

scaling factor to all Zt scores from one family. For example,

we might take:
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Z∗

t (Zt) =

{

Zt if ht ∈ SSRB

δZt if ht ∈ SRB

Unfortunately, the problem at each boosting round be-

comes more difficult as the previous classifiers strengthen

the strong classifier rule Ht(x). Early in the boosting rounds

RealBoost is able to find very discriminant features. When

distributions of the positive and negative data sets are moder-

ately disjoint the effect of overfitting is minor. In later rounds,

when RealBoost is learning more subtle features we find the

effect of the overfitting is much greater. Hence, this naive

approach does not work very well.

A. Parity Between Two Families with the Same Base Feature

Our initial solution to the changing unfairness/disparity

between the Zt scores for the SRB and SSRB families is

to create a simple model function δ(R) of the disparities.

This adjusts the Zt score to a less optimistic value based on

the boosting round number R. We find the new Z∗

t score as

follows:

Z∗

t (Zt, R) =

{

Zt if ht ∈ SSRB

δ(R)Zt if ht ∈ SRB

To create a model δ(R) of the disparity as the rounds

progressed we ran RealBoost through 150 rounds (T = 150)

with either the SRB or SSRB families. Figure 6 shows the

resulting graph of the minimum Zt scores in each round.
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Fig. 6. Minimum Zt scores from each family as training rounds progress.
We see that the minimum Zt scores are consistently lower from the SRB

family than the SSRB family. A third line showing the adjusted Z∗

t
=

δ(R)Zt scores for the overfitting feature is shown. The formation of the
function δ(R) is shown in Figure 7. Experimental parameters are shown in
Table II.

Figure 7 shows the percentage difference in Zt scores

from either family. This is used to create a simple function

δ(R) = αlog(R/β) + c) to adjust the values in each round.

Where α, β and c are tuned to generate the best fit possible.

Several different δ functions were tested for suitability and

it appears that the success of the method is not sensitive to

minor changes in the function as long is it smoothly captures

the disparity between Zt scores with reasonable accuracy.

The success of this adjustment in lowering the overall error

rate is shown in Figure 8.
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Fig. 8. Pedestrian Detection ROC curves for 2 family feature pool
with Z∗

t
score replacing the overly optimistic score against an unchanged

2 family feature pool. The graph also shows the ROC curve when the
SRB or SSRB family is used exclusively by RealBoost. In experiment
3 the bias is so severe in favour of choosing the poorer feature that the
existence of the improved feature makes no significant difference at all.
Skeptics will note that the two family SRB with Z∗

t
= Zt × δ(R) &

SSRB (curve 4) is outperformed by the single family SSRB experiment
(curve 2). This is because the SRB family doesn’t not contain any new
information. A demonstration of the δ compensation methods ability to
improve results between two complementary color features is shown in
Figure 9. Experimental parameters are shown in Table II.
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Fig. 9. Pedestrian detection ROC curves for 2 family feature pool with S
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two classifier families clearly lowers the negative effect of the bias toward
the SRB family (compare experiments 7 & 8). The best result is achieved
by improving the models of both families, i.e, by using the SRB-method,
in experiment 6, see Section IV-B. Experimental parameters are found in
Table II.
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TABLE II

EXPERIMENTAL PARAMETERS

Exp# Features

1 10KSRB

2 10KSSRB

3 10KSRB + 10KSSRB

4 (10KSRB with Z∗

t
) + 10KSSRB

5 10KSRB + 20KLABRB

6 10KSSRB + 20KLABSRB

7 (10KSRB with Zt) + 20KLABSRB

8 (10KSRB with Z∗

t
) + 20KLABSRB

9 10KSSRB + 30KRGBSRB

10 10KSSRB + 30KrgbSRB

11 10KSSRB

12 10KSSRB + 20KLABSRB

13 10KSSRB + 30KRGBSRB

14 10KSSRB + 30KrgbSRB

Exp#’s Training Rounds ROC-Valid Subject

1-2 9K+,9K− 150 2K+,20K− Pedestrians

3-10 9K+,9K− 200 2K+,20K− Pedestrians

11-14 9K+,9K− 10 2K+,20K− Signs

B. Parity Between Families with Non-Parametric Models

Both the RB-method and the SRB-method provide strong

parametric models of the training data for Haar-like features

in the trialled color spaces. So what happens when all feature

families available to RealBoost are exclusively using either

method? Is it valid to assume that the degree of overfitting

in all models is now similar, and therefore, that we do not

need to adjust the Zt score?

In the case of the RB-method, the number of response

bins used is known to affect the degree of overfitting [7], [9].

Generally, a lower number of bins is used than in the SRB-

method. Furthermore, some features in the family will have

a narrower distribution than others and will use fewer bins.

The greatest overfitting occurs for features within a family

which spreads more evenly over the model. These overfitting

features will be selected by the RealBoost algorithm beyond

their true usefulness in building a strong classifier. This

means that the Zt scores are not necessarily comparable

within a family.

In the case of the SRB-method, we are able to use

a higher number of response bins as this does not lead

to overfitting. Exceptionally unfriendly distributions can be

imagined which would cause this method to overfit, underfit

or produce significant artifacts. Such distributions have not,

in our experience, been observed in Haar-like feature based

families in any color space. Rather, all distributions observed

appear to be well suited to this method. For this reason, we

conclude that the SRB-method feature families are indeed

comparable in terms of Zt scores. Figure 9 shows the effect

of using the SRB-method on two families in different color

spaces.

C. Parity Between Families with Parametric Models

We have investigated the suitability of Real-Valued classi-

fiers based on Gaussian models for the positive and negative

distributions. Significant success was had [7] in using Gaus-

sian models with the binary Multi-Thresholding method and

AdaBoost (see Figure 3 and Section II-C). An attempt was

made by us to formulate a version of the same technique

using RealBoost. Causing initial surprise, this was found to

be very poor. Closer examination revealed that the Gaussian

models produced precisely predicted the location of the

two optimal thresholds θ1 and θ2. However, the Gaussian

models produced very poor real-valued confidence measures

at points on the distributions far from θ1 and θ2. This inserted

major inaccuracies into the RealBoost strong classifier rule.

Clearly, some feature responses, including those based

on Haar-like features, will exhibit distributions which are

more Gaussian than others. Similar behaviours are likely to

occur with other parametric models. The degree to which

any parametric model overfits or underfits may be individual

to a single feature or associated with a particular family.

For example, some features may produce fairly Gaussian

distributions in one color space but not another. If Gaussian

models are used in both families then we may want to

compensate for the greater failing of the model in the less

Gaussian family. In the typical case of a Haar-like feature

in some color space we believe this to be an inadequate

solution. The features, within a family, vary so much in their

distributions that attempting a ’one size fits all’ adjustment

δ(R) for a whole family is hardly meaningful.

D. Modelling the Overfitting

The adjustment of Zt by δ(R) was formed by comparing

two feature families with similar base features over several

experimental boosting rounds. This is able to guide Real-

Boost toward better choices. The downside is that δ(R) has

a limited ability to predict the effect of overfitting when

RealBoost is building the strong classifier rule with other

feature families of unknown effect on the strong classifier

rule.

A possible solution to this is to validate all hypotheses

against validation data to produce a per feature offset.

However, a thorough validation stage prior to RealBoost’s

selection stage would be cumbersome even for offline train-

ing.

A more feasible solution may be to estimate the uncer-

tainty of a model by measuring the rate at which it converges

to a stable hypotheses during training.

V. COLOR SPACE SUITABILITY

While much of this paper concerns itself with issues of

parity between Zt scores in RealBoost, it also contains the

results of our experimental work in combining a number

of our improvements to our RealBoost experimental system.

Particularly, it is the first examination of the richness of

information to be gained from color when using our im-

proved modelling methods. Figure 10 shows ROC curves

for a variety of combinations of the feature families. Details

of the experimental parameters used in these experiments

can be found in Table II. Please note, that these experiments

were designed to show the benefits of using a mixed pool
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of features, hence the use of a single stage only. In a real

system, a cascaded approach, as in [1], should be used.
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Fig. 10. Pedestrian detection ROC curves comparing the contribution of
color to overall recognition. Experimental parameters are shown in Table
II. For a false positive rate of 1% color improves detection from 90.7% to
96.4%.
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Fig. 11. Sign detection ROC curves comparing suitability of different color
spaces. Experimental parameters are shown in Table II. For a false positive
rate of 0.01% the LAB color information improves detection from 94% to
96.7%.

Figures 10 and 11 show clearly that color information is a

useful cue for improving the quality of an overall classifier

for both pedestrian and sign detection tasks.

The addition CIE LAB color space to monochrome cues

produces the best results on the pedestrian detection task. It is

possible to make all the SRB-method based feature families

from Table I available for selection by RealBoost, however,

the gains are likely to be small. There is also a high cost

to preparing the various precomputed integral images of the

different color spaces. Thus we suggest the use of the CIE

LAB color space as an additional color cue for pedestrian

detection.

For very low false positive rates the CIE LAB color space

is once again the best addition to monochrome information.

For higher rates the rgbSRB family contributes more infor-

mation. However, for live applications one usually requires

the false positive rate to be very low due to the large number

of possible input windows in a single frame of video.

Since the CIE LAB color space requires only 2 more

precomputed images for the A and B color channels it is

also preferable to the 3 channel RGB and rgb color spaces.

VI. CONCLUSIONS

The parity of features available to RealBoost must be

considered carefully as RealBoost will exhibit bias toward

optimistic and overfitting features. Models can be built to

predict the bias and compensate prior to RealBoost features

selection. Implementations of such compensation mecha-

nisms yield very positive results. These compensate for the

major differences in optimism between different families of

features. However, results point towards additional work on

an even more robust compensation mechanism, particularly

one which is able to compensate for differing levels of

overfitting between features of the same family.

Several color spaces are able to provide greater robustness

on pedestrian and sign detection tasks. The A and B channels

of the CIE LAB color space are particularly good as an

additional cue to monochrome Haar-like features on both

pedestrian and sign detection. The final strong classifiers,

using both monochrome and color cues, achieve much im-

proved accuracy and provide notable robustness on difficult

recognition tasks.
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