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Abstract— This paper presents improvements and extensions
of a previously presented threat assessment algorithm. The algo-
rithm uses Monte Carlo simulation to find threats in a road scene.
It is shown that by using a wider sample distribution and only
apply the most likely samples from the Monte Carlo simulation
for the threat assessment, improved results are obtained. By using
this method more realistic paths will be chosen by the simulated
vehicles and more complex traffic situations will be adequately
handled.

An improvement of the dynamic model is also suggested, which
improves the realism of the Monte Carlo simulations. Using the
new dynamic model less false positive and more valid threats are
detected.

I. INTRODUCTION

Building safer vehicles is a prime concern of todays Auto-

motive Manufacturers. There are currently many automotive

collision avoidance systems approaching the market, such as

collision mitigation system [1], [2] and collision warning

systems [2], [3]. These applications have in common that they

try to assess one kind of threat and take action when that

specific threat is detected. Broadhurst et al. [4] presents a

framework for reasoning about the future motions of multiple

objects in a road scene. This method can be used to find

threats by predicting the paths of the objects using Monte

Carlo simulation. Using the framework presented, in theory

any kind of threat could be detected, not as in earlier work only

a specific one. Eidehall et al. [5] developed a threat assessment

algorithm based on this framework.

Eidehall’s algorithm simulates the road scene three seconds

forward and calculates a threat level. This could be used to

warn the driver or launch an autonomous response depending

on the application. [6] states that inattention of the driver dur-

ing the last three seconds before the collision is a contributing

factor in 93% of the crashes. Consequently, many accidents

could be avoided or reduced in severity if the driver gets a

warning in this time frame.

The algorithm in [5] simulates the host vehicle as a de-

terministic object and all other objects, in the road scene,
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as stochastic ones. The future paths of other objects are

determined by their current position and future control inputs,

such as, steering or braking. In a real application, their current

positions can be measured with a sensor, or a combination of

sensors. However, their future control inputs are unknown and

that is why they are modelled using a stochastic variable:

U = [u1, . . . , um],

which consists of the control input for m number of objects

in the scene. ui contains the control input for a time interval

It = [0, Tmax] for object i, i.e., ui = (u1(t), . . . , unc
(t))i. Tmax

is the prediction horizon, i.e., the time period the predictions

are made and nc is the number of control inputs for each

object. This means; given a control input U , the entire system

can be simulated, using motion models for all objects, to reach

a state X(U). X(U) will contain the position and other states

for all objects for the entire time interval It, given the control

input U , and can be written:

X(U) = [x1(u1), . . . , xm(um)].

A threat is reported if the host vehicle need to change its

intended path, in order to avoid a collision. All objects in

the scene are simulated with a Monte Carlo algorithm, using

an improved resampling procedure, called iterative sampling.

The iterative sampling lends many ideas from particle filter

resampling [7]. The samples are weighted according to how

likely paths they represent and the most likely samples are

used to calculate the threat level. This paper presents an

analysis of and improvements in two areas, the dynamic model

and the sample distribution, of the algorithm suggested in [5].

Using these improvements, more realistic paths will be chosen

by the simulated samples and better performance of the threat

assessment is obtained.

II. DYNAMIC MODEL

In this section the Dynamic Model is analysed and an im-

proved model is presented. The reason why the original

Dynamic Model in [5] needs to be changed is discussed.
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Fig. 1. The limitations of the acceleration. The acceleration for a vehicle
is limited by the road friction af , the circle, and by the maximum steering
angle and engine torque, the rectangle. The intersection of the circle and the
rectangle, the shadowed area, is the allowed region of acceleration.

A. Analysis of the Original Dynamic Model

All objects in a road scene, such as cars, bicycles and pedestri-

ans are modelled using two control inputs (u1, u2) to control

their longitudinal and lateral motion respectively. There are

physical boundaries to the acceleration of an object, i.e., for a

car, engine torque and road friction. Different methods to han-

dle these limitations have been presented in previous works.

In [4], it is suggested to remove all samples with acceleration

outside the boundaries from the sample set, and thereby get a

physically allowed set of samples. However, in [5] it is argued

that by, already from start, distributing (u1, u2) according

to the maximum levels of acceleration, better results can be

obtained. Hence, there is no need to discard any samples, and

a higher concentration of allowed control inputs is gained.

Since there is a trade off between computer performance and

accuracy in any Monte Carlo application it is important to not

use any unnecessary computation power at this stage. With

the method of Eidehall et al. fewer samples are required to

get the same concentration of allowed samples.

The dynamic model for a car in [5] uses a simple road

friction model as limitation for the acceleration, as well as

maximum engine torque and maximum steering angle. The

maximum road friction is described as an ellipse in the two

dimensional acceleration space, and the combination of the

maximum steering angle and engine torque yields a rectangle.

The intersection of the ellipse and the rectangle, Figure 1,

defines the allowed accelerations.

The longitudinal and lateral accelerations are treated sep-

arately and the limitations depends on the velocity of the

vehicle v, and on the thresholds vlat and vlong . The lateral

acceleration is limited by the maximum steering angle ϕmax

in combination with the wheelbase L if v ≤ vlat and road

friction af if v > vlat. The longitudinal acceleration is

limited by the engine torque k/v, where k is the engine

power divided by the mass of the vehicle, if v > vlong and

road friction af if v ≤ vlong . Eidehall et al. argues that the

breaking acceleration is limited by the road friction, not the

engine torque. Therefore, the samples should be uniformly

distributed between the maximum acceleration and maximum

deceleration. The resulting dynamic model is:
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Fig. 2. The accelerations depending on the control signal u1 for the original
model (—) and the new model (- -). The plot is based on a vehicle with a
velocity of 90 km/h

ẋ = v cos θ (1a)

ẏ = v sin θ (1b)

v̇ =

{

u1af if v ≤ vlong

u1
k/v+af

2
+

k/v−af

2
if v > vlong

(1c)

θ̇ =

{

v sinϕmaxu2/L if v ≤ vlat

afu2/v if v > vlat
(1d)

It is important that the dynamic model has correct properties

such as mean values. The simulated vehicles will otherwise

move in a non realistic manner. The expected mean values

for the lateral and longitudinal accelerations (acclat, acclong)
are zero. This is confirmed by data collected from vehicles

driving on a highway. The problem with the dynamic model

of Eidehall et al. is that Eq. (1c) has a mean lower than zero

for a uniformly distributed u1. The mean value for Eq. (1c)

is:

acclong = E[v̇] = E[u1

k/v + af

2
+

k/v − af

2
] =

= E[u1]
k/v + af

2
+

k/v − af

2
=

= {u1 ∈ U[−1, 1], E[u1] = 0} =

=
k/v − af

2
≤ 0 (2)

To illustrate this a vehicle with vlong = 90 [km/h] is

studied. As shown in Figure 2, the model has the correct min-

and max-values for the acceleration but in between it is lower

than expected, i.e., the vehicle decelerates for u1 = 0 when it

is supposed to remain at the same velocity. Table I shows that

the samples of the vehicle on average decelerates with about

3, 2 [m/s2].

B. The improved Dynamic Model

To get a dynamic model with a more accurate mean accelera-

tion it is suggested that Eq. (1c) is replaced with Eq. (3). This

model has a much better mean acceleration than the original

one, see Table I. Other improved properties are, as illustrated
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Model Mean Acceleration
original −3.2180 m/s2

new −1.6091 m/s2

TABLE I

MEAN VALUES OF ACCELERATIONS FOR A VEHICLE DRIVING WITH A

VELOCITY OF 90 km/h

in Figure 2, that the samples accelerate for positive control

signals and decelerate for negative ones. The mean value for

the improved dynamic model is calculated in Eq. (4). The new

model is evaluated in Section IV.

v̇ =

{

u1k/v if v > vlong & u1 ≥ 0
u1af else

(3)

acclong = E[v̇] = {u1a ∈ U[−1, 0], u1b ∈ U[0, 1]} =

=
1

2
E[u1aaf ] +

1

2
E[u1bk/v] =

=
af

2
E[u1a] +

k/v

2
E[u1b] =

= {E[u1a] = −1/2, E[u1b] = 1/2} =

=
k/v − af

4
≤ 0 (4)

C. Ideas of further Improvements

It is believed that a model with acclong ≈ 0 could be

found by studying the acceleration patterns of real vehicles.

A model fitted like this would probably not be as simple and

mathematically appealing as the one suggested.

Another way to get acclong = 0 is to move the breakpoint

in Equation 3 from the origin to the left. Depending on the

velocity it is possible to find a solution with the correct mean

value. However, this method loses the feature that u1 = 0 =>
v̇ = 0.

III. SAMPLE DISTRIBUTION

In this section the effect of the spread of the sample distribu-

tion and the percentage of samples used to calculate the threat

level are studied. Two kinds of sample distributions are studied

for different scenarios, firstly, the distribution generated with

the Monte Carlo algorithm, called the primary distribution.

Secondly, the distribution used to calculate the threat level,

which is a subset of the primary distribution, that includes a

percentage of the most likely samples, called the secondary

distribution. A change to a more spread primary distribution

with a lower percentage is suggested.

A. The Primary Distribution

Eidehall et al. argues that virtually all of the samples from the

primary distribution should be used in the threat calculation

since it is extremely unlikely for a vehicle to be involved

in an accident. Compare the number of driven [km] with

the number of accidents. 99% of the samples’ probability

mass is used in the secondary distribution resulting in that

only the most extreme cases are left out. To be able to work

with this many samples, Eidehall et al. use a narrow primary

sample distribution where most generated samples follows the

intended path.

However, one of the reasons that vehicles veritably never

crash is that the driver sees the road scene in front and

anticipates its appearance in the near future. If the driver sees

a static obstacle in front of the vehicle a turn or brake action

will be applied to avoid it. The samples in the Monte Carlo

simulation do not have this information about the surroundings

and can not predict the future, they are exclusively controlled

by two random input signals. To compensate for the lack

of information, many more samples need to be generated to

ensure that every likely path is found. These paths might be

the elementary choice of a human driver whereas almost no

samples in a narrow distribution will find them.

The behaviour of the primary sample distributions are

effectively controlled by four behaviour parameters, λi, i =
[1, 2, 3, 4], described by Broadhurst et al. The parameters

control the samples’ desire to follow the intended path, keep

the initial velocity and accelerate in the lateral and longitudinal

direction. In order to get a primary distribution narrow enough

to use 99% of the samples probability mass, Eidehall et al.

use values of the parameters much higher than the ones in

[4]. The effects of the λi-values, on the primary distribution,

are presented in Figure 3. Three plots with different behaviour

parameter values, called λ′

i, are studied. The results are based

on the parameter values used in [5], called λ̂i. A uniform

scaling, α = [ 1

100
, 1

10
, 1], λ′

i = α · λ̂i, of all four parameters

is studied, not the individual values.

It is clear that lower λi-values creates a much more spread

primary distribution that covers a larger area of the sample

space. High values yield a narrower and more dense distribu-

tion.

B. The Secondary Distribution, Simple Road Scene

Experiments were performed to study the combined effects,

on the secondary distribution, of the λi-values and the per-

centage of the probability mass used. Some interesting results

are presented in Figure 4. As expected, the experiments show

that the secondary distribution too becomes more spread for

lower λi-values, see Figure 4(a), 4(d) and 4(c), 4(e), as well

as for higher percentages, see Figure 4(a), 4(b).

When deciding what is a good secondary distribution to use

for the threat evaluation, several factors need to be considered.

Firstly, it is important that the samples are following relatively

close to the optimal path, or the path a human driver would

choose. It is important that the distribution has some variance

since a human driver do not chose exactly the same path every

time. An example of a good distribution is the one that Eidehall

et al. suggested, Figure 4(d). However, both Figure 4(b) and

4(c) have equally good behaviour.

The second criteria is that the distribution consists of enough

samples to accurately evaluate the threat. This would make the

distribution in Figure 4(d) much better than the ones in 4(b)

and 4(c) since it uses 1330 samples instead of 84 and 192.
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Fig. 3. The effects on the primary sample distribution inflicted by the λi-values. The parameters are scaled uniformly with scaling α = [0.01, 0.1, 1].
This scenario shows two vehicles travelling from left to right. The lower is the deterministic host vehicle and the upper is the stochastically modelled vehicle.
The two vehicles travel in different lanes and does not constitute a threat for each other. The figure shows the entire time propagation, from 0 to 3 seconds.
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(a) α = 0.01, 99%, number of
samples: 1785

0 10 20 30 40 50 60 70 80 90
−10

0

10

20

[m]

[m
]

(b) α = 0.01, 10%, number
of samples: 84
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(c) α = 0.1, 30%, number of
samples: 192
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(d) α = 1, 99%, number of
samples: 1330
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(e) α = 10, 30%, number of
samples: 129

Fig. 4. The secondary sample distribution for different scaling and percentages. These distributions are subsets of primary distribution, in Figure 3, with a
percentage of the most likely samples. The scale factor, percentage and actual number of samples, out of 2000 in the primary distribution, for each secondary
distribution is presented. Figure 4(d) uses the values suggested in [5].

However, the important factor is not the number of samples

but rather the number of independent samples. The resampling

process removes bad samples and replaces them with copies

of better ones. This makes a lot of the samples in the final

distribution being siblings born from a good starting sample.

This effect can be observed in Figure 4(e), where the 129

samples have the same trajectory until the last resample step.

This effect is present in all sample distributions but in a higher

degree for higher λi-values.

It is hard to tell which distribution is best with just the infor-

mation from the simulations of this uncomplicated scenario.

In fact, it does not matter whether the secondary distribution

in Figure 4(b), 4(c) or 4(d) is used in this specific case, since

the differences between the distributions are so small.

C. Complicated Road Scene

To investigate the performance further, tests on a more

complicated scenario were performed. This scenario is the

same as the previous one except that an obstacle is placed

in front of the stochastic vehicle. The results are presented

in Figure 5, and the three distributions that were good in the

uncomplicated scenario in section III-B are studied. Both the

primary, top row, and the secondary, bottom row, distributions

are presented.

The secondary distributions are studied to see if a good path

is chosen. A very smooth and natural path has been found

in Figure 5(a). The primary distribution is also very good, it

covers the sample space well and no holes can be found. The

secondary distribution in Figure 5(b) could also be a good

candidate. However, it lacks some features of a human driver.

If an obstacle is discovered this close in front of the vehicle,

a human would immediately use a steering action to avoid it,

not like in this case wait for a little bit and then do a more

powerful steering. The primary Monte Carlo distribution is

relatively good in this case too, but big holes can be discovered

Step Fig. 5(a) Fig. 5(b) Fig. 5(c)

1
2
3
4
5

run 1 run 2
1000 1000

686 696
49 52

1000 1000
1000 1000

run 1 run 2
1000 1000

668 708
13 12

1000 254
1000 1000

run 1 run 2
1000 1000

559 552
6 5

1000 1000
1000 1000

TABLE II

The number of conflict free samples at the resampling steps in the Monte

Carlo simulation. Three scenarios are evaluated, with results from two

Monte Carlo simulations. Only the interesting resample steps around the

passing of the obstacle are studied.

in the distribution just after the passage of the obstacle. This

is because the samples mostly derive from two families with

different paths.

The secondary distribution in Figure 5(c) is not a good path,

in fact it looks like two different ones. It consists mostly of

siblings of two samples. The primary distribution is bad as

well; it is a narrow distribution that does not cover much of

the sample space.

The number of samples is studied to understand why the

distributions behave the way they do. The actual number of

samples used in the final distribution is not the most important

factor to study, but rather the number of samples they derive

from. The number of conflict free samples at the resamplings

in the Monte Carlo simulation is presented in Table II. The

Monte Carlo simulation has been run twice.

It is clear that the distribution in Figure 5(a) generates much

more samples that finds their way around the obstacle, so its

final distribution is derived from a lot more samples and should

therefore have a better statistical base. The sample space gets

a better coverage and more paths are examined in order to find

the best one.
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(a) α = 0.01, 10%, number of samples: 89
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(b) α = 0.1, 30%, number of samples: 230
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(c) α = 1, 99%, number of samples: 1392

Fig. 5. The primary, top, and secondary, bottom, distributions. The scenario presented is the same on as in Figure 4 except that an obstacle has been placed
in front of the stochastic vehicle. The scale factor, percentage and actual number of samples, out of 2000 in the primary distribution, for each secondary
distribution is presented.

With the information from Table II it is possible to explain

the appearance of Figure 5(c). Since only 5–6 survived the

passage the rest of the distribution is derived from them. In

this case it is even possible that two of the surviving samples

has a much higher probability than the others and that almost

only those ones got copied. The appearance of the primary

distribution supports this theory. Having this few samples as

parents for the distribution is not a good statistical basis.

It is suggested that the distribution with a scale factor,

α = 0.01 that uses 10% of the samples’ probability mass

is used instead of the original one suggested in [5]. The

new distribution has a better appearance in a complicated

scenario and it derives from more samples which improves

the statistical base.

D. Overtaking Scenario

To further confirm the performance of the new distribution,

an overtaking scenario is studied. A scenario where a stochas-

tic vehicle is overtaking the host vehicle for the original and

the suggested distributions are plotted in Figure 6. The new

distribution has a better performance in this case too. The

overtaking starts much earlier in Figure 6(a) than in 6(b), just

like a human driver would do.

A close study of Figure 6(b) shows that the distribution

mostly derives from just one sample that found a good way

around the host vehicle. In Figure 6(a) the distribution is much

denser during the overtaking and therefore more samples have

found the way. This shows again that even though less samples

are used in the final distribution for 6(a) than for 6(b) it has

a much better statistical base.

IV. EVALUATION ON TRAFFIC DATA

In this section the effects of the improved dynamics and the

changed sample distribution, on the threat assessment, are

studied. The algorithm with the new implementations was

applied on 3.5h of data collected while driving a host vehicle

on a freeway.

The number of threats detected is lower using the improved

dynamic model, as shown in Figure 7. The threats that have

disappeared are from situations when the host vehicle is

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

[m]

[m
]

(a) α = 0.01, 10%, number of samples: 51

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

[m]

[m
]

(b) α = 1, 99%, number of samples: 764

Fig. 6. A scenario where a stochastic vehicle overtakes the deterministic
host vehicle. The secondary distributions are presented.

driving behind an other vehicle in the same lane with the

same or higher velocity. To further study this effect, a similar

test scenario, where the host vehicle is closing in on an other

vehicle, was created, see Figure 8.

The samples using the original dynamic model travels a

shorter distance than the ones with the improved dynamic

model. This makes the host vehicle drive in to some of the

samples which results in a conflict. A threat is detected for

the original model, with time to collision 2.7 [s]. No threat is

detected for the scenario with the new dynamic model. This

shows that the improved dynamic model has a potential of not

giving as many false positive threat warnings as before. An

other contribution is that more valid threats could be detected.

With the improved dynamics, threats will be detected when

a vehicle is closing in on the host vehicle, that the original

model would overlook.

More threats were detected when using the changed sample

distribution, see Figure 7. The new threats can be divided into

three categories:

1) The host vehicle driving behind an other vehicle in the
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(d) Both Improved Dynamics and Changed Sample Distribution

Fig. 7. This figure shows the detected threats when the different algorithms
were applied on a dataset. The data was collected while driving the host
vehicle on a freeway.
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(a) The scenario using the original model
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(b) The scenario using the improved dynamics model

Fig. 8. A scenario where the host vehicle is closing in on an other vehicle.
The positions of the host vehicle during the whole scenario and the final
position of the samples of the other vehicle is plotted. The host vehicle starts
in the origin and has a velocity of 30 [m/s], the other vehicle starts 35 [m]
in front of the host vehicle with the initial velocity of 25 [m/s].

same lane.

2) The host vehicle driving close behind a vehicle near the

line in an adjacent lane.

3) Two vehicles excluding the host vehicle driving close

together in the same lane.

The first two kinds of new threats appear because the

new distribution is a little bit more spread than the original

one. These threats could in some cases be regarded as false

positives. By also applying the improved dynamic model

most of the new threats of the first kind disappears. The

scattered threats between 2200–2800 [s] in Figure 7(c) mainly

consists of the first kind and they are considerably reduced in

Figure 7(d). The last threat in Figure 7(c) is of the second

kind. The appearance of this sort of false threat could be

solved by adjusting the individual λi-values and thereby get a

distribution a with less lateral spread.

The third kind of threats are valid threats. The original threat

assessment algorithm has a problem detecting threats that does

not involve the host vehicle, since all conflict samples are

removed in the iterative resampling. Being able to detect these

threats demonstrates the strength of the whole framework.

However the improved dynamic model reduces these threats

too. The first threat in 7(c) is of the third kind and it has almost

disappeared in 7(d).

V. CONCLUSION

Two methods to improve the threat assessment algorithm

suggested by Eidehall et al. [5] have been presented and

analysed. It has been shown that by using these methods a

better performance of the threat detection is gained. Better

and more realistic paths are chosen by the simulated samples

and more complex traffic situation can be assessed. More valid

threats can be detected and less false positives are found.
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