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Abstract— This paper describes a stereo-vision-based candi-
date selection method for pedestrian detection from a moving
vehicle. Non-dense 3D maps are computed by using epipolar
geometry and a robust correlation process. Non-flat road
assumption is used for correcting pitch angle variations. Thus,
non obstacle points can be easily removed since they lay on
the road. Generic obstacles are selected by using Subtractive
Clustering algorithm in a 3D space with an adaptive radius.
This clustering technique can be configurable for different types
of obstacles. An optimal configuration for pedestrian detection
is presented in this work.

I. INTRODUCTION

The most successful human detection systems from a

moving vehicle are being accomplished through the com-

puter vision as the main sensor. The fact that it was the

same sensor humans use for driving is not a triviality. It

provides the main clues for pedestrian detection although

other sensors, such as laser-scanners, have also been tested

[1]. Designing pedestrian detection systems for Intelligent

Transportation Systems is quite different from detecting and

tracking people in the context of surveillance applications

because the background is no longer static and pedestrians

significantly vary in scale.

The candidate selection method can be implemented by

performing an object segmentation either in the 3D scene

or in the 2D image plane. The first solution requires the

use of stereo vision, while the second one tackles the prob-

lem of object detection using a single camera. Monocular

approaches constitute a cheap solution, are less demanding

from the computational point of view and they have an

easier calibration maintenance process. On the contrary, the

main problem with candidate selection methods in monocular

systems is that, in average, they are bound to yield a

large amount of candidates per frame, in order to ensure

a low number of pedestrians that are not selected. In [2]

a monocular attention mechanism generates up to 75 win-

dows per frame which are fed to the classifier as potential

pedestrians. Another problem in monocular systems is the

fact that depth clues are lost unless some constrainsts are

applied, such as the flat terrain assumption, which is not

always applicable, specially in urban areas where vehicles

are exposed to changes in their pitch angle due to braking,

accelarating, bumped pedestrian and pelican crossings, etc.

Not-flat road assumption becomes compulsory for a robust

object detection algorithm. It was introduced by non-flat road
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approximations by series of planar surface sections over the

v-disparity map [11], [12]. In [18] road vertical profile is

modelled with a clothoid curve fitting directly on the detected

3D road surface points. A monocular pedestrian detection

system, using vertical symmetries, is proposed in [3]. After

a refinement process based on maximizing the symmetry and

vertical edges density, along with a stereo refinement, they

fit the bounding boxes by releasing candidates which might

be pedestrians [4],[5]. In a later work [6] the stereo vision is

used for both the bounding box validation and the pedestrian

position estimation.

Among the frameworks that use stereo vision for candidate

selection we emphasize the next three. In [8] a stereo vision

system to generate 3D representation of the scene with dis-

parity maps, is propounded. The candidates are classified as

pedestrian or non-pedestrian using a trained neural network.

Since this is the first stereo approach in the literature, the

segmentation algorithms are very basic. In [9] an obstacle

detection procedure is done by using a multiplexed depth

map, and selecting regions of interest whose number of

depth features exceeds a percentage of the window area.

Then they extract edge images and match them to a set of

learned examples using chamfer distance [10]. In order to

extract information from 3D scene in [11] a segmentation

based on v-disparity maps is performed. The information

for performing generic obstacles detection is defined with

vertical lines. This implies managing very little information

to detect obstacles, which may work well for big objects

detection, such as vehicles [12], but might not be enough for

small, thin objects detection, such as pedestrian, especially

in city traffic due to the heavy disparity clutter.

Infrared cameras have been also tested with both monoc-

ular [13][14] and stereo [15][16] vision. These cameras

provide better visibility at night but they also provide images

with lower resolution, where the appearance of pedestrians

is not clear compared to that of day-time images. In addition

the use of infrared cameras is quite an expensive option that

makes mass production an untractable problem nowadays.

In this work a more comprehensive analysis of the candi-

date selection method developed in [7] is presented. A stereo

vision based method for generic obstacle detection in the

framework of ITS is described. A robust correlation process

is applied in order to minimize stereo-matching errors. Pitch

angle is modelled by a set of planar surfaces over the lateral

view. Road points like shadows, lane markings, etc., are

separated from the obstacle points. A subtractive clustering

attention mechanism is used in order to select candidates

as generic obstacles. This technique is applied by using
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an adaptive 3D radius with an optimal configuration for

pedestrian detection. The main goal is to have an obstacle

detection process with low false negative rate (number of

pedestrians not detected) and low false positive rate (number

of non-pedestrians selected). Thus the number of candidates

per frame is reduced and next stages (classification, tracking,

etc.) can be done easier.

The paper is organised as follows: section II provides a

detailed description of the system. The results achieved up

to date are presented and discussed in section III. Finally,

section IV summarizes the conclusions and future work.

II. SYSTEM DESCRIPTION

This section includes the description of the 3D recon-

struction, the pitch angle computation for the non-flat road

assumption and finally the 3D clustering technique used in

order to detect generic obstacles.

A. Non-dense 3D maps

Stereo vision refers to the ability to infer information on

the 3D structure and distance of a scene from two or more

images taken from different viewpoints. A stereo system

must solve two problems: which parts of the left and right

images are projections of the same scene element? (the cor-

respondence problem) and given a number of corresponding

parts, what can we say about the 3D location and structure

of the observed objects? (the reconstruction problem)[19].

Our stereo vision system consists of two calibrated and

synchronized cameras with a Firewire connection and a base-

line of approximately 0.3m. These ones are mounted near

the rear-view mirror of the vehicle. The distance between

the cameras and the front of the car is large enough to

use a larger baseline distance since the dead zone does not

reach the front of the car. In addition as the camera baseline

increases the sensing range increases and the detph resolution

becomes denser. Nevertheless the baseline can not be much

more larger than 0.3m since the response time becomes

intractable.

The calibration process yields the fundamental matrix, Flr,

that defines the system epipolar geometry. This way the

perfect physically alignment between cameras that implies

the assumption of parallel epipolar lines, is not necessary

because the stereo correlation process defines mathemat-

ically the geometric relationship for the cameras. While

image rectification provides a simple area for correspondents

and straightforward 3D reconstruction, the general geometry

mode, without rectification, provides a better solution since

no image resampling has to be done. Moreover, epipolar

geometry is precomputed when the application starts, and

stored in a lookup table, so that, epipolar lines computation

is avoided at runtime. Radial and tangential distortions are

eliminated and the intensities of the left and right images are

normalized to correct for differences between them. Relevant

points in both left and right images are extracted using

the well known Canny algorithm, with adaptive thresholds

depending on the histogram distribution of the image. By

focusing to the image edges the computational cost is

reduced and the correlation process improved, since the

interest points are placed in non-uniform image areas. In

addition, Canny image provides a good representation of the

discriminating features of pedestrians: features such heads,

arms and legs are distinguishable, when visible, and are

not heavily affected by different colors or clothes. Among

the wide spectrum of matching techniques that can be used

to solve the correspondence problem we implemented the

Zero mean Normalized Cross Correlation because of its

robustness, which can be can be computed as follows:
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where A and B are defined by:

A = (I(x + i, y + j) − I(x, y)) (2)

B = (I(x′ + i, y′ + j) − I(x′, y′)) (3)

where I(x, y) is the intensity level of pixel with coordinates

(x, y), and I(x, y) is the average intensity of a (2n + 1) ×
(2n+1) window centered around that point. As the window

size decreases, the discriminatory power of the area-based

criterion gets decreased and some local maxima appear in

the searching regions (epipolar lines). On the contrary, an in-

crease in the window size causes the performance to degrade

due to occlusion regions and smoothing of disparity values

across boundaries. According to previous statements and to

a computational cost criterion a practical 7×7 correlation

window size is selected.

A post-processing is applied in the correlation step in order

to increase robustness and reduce noise:

• Only strong responses of the correlation function along

the epipolar line are considered as correspondents.

• If the global maximum of the function is not strong

enough relative to others local maximums, then the

current left image point is rejected (unique maximum).

• Right image correlated points are also correlated over

the left image. If the new left matched points are not

exactly the same than the original ones, these corre-

spondences are considered as noise (mutual check).

• In case different left image points would be correlated

over the same right image point, two strategies could be

taken: maximum correlation criterion or minimum dis-

parity criterion. The second one is used so as the noise

due to structured backgrounds, which usually produces

close 3D points, is avoided (minimum diparity).

After applying the previous steps, the resulting correaltion

maps look much more noise-free. In general, the number of

correlated points gets decreased by an average of 24% after

using mutual check strategy. By using both, mutual check

and minimum disparity methods an average of 37% of points

are selected as noise.
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Fig. 1. Upper row: original images, Lower row: non-dense 3D maps

As we know both intrinsic and extrinsic parameters of the

stereo system, a scene point can be reconstructed by using a

purely algebraic approach: give the projection matrices Ml

and Mr and the matching points pl and pr, we can rewrite

the constraints slpl = MlPl and srpr = MrPl as

{

pl × MlPl = 0
pr × MrPr = 0

⇔

(

[pl×]Ml

[pr×] Mr

)

Pl = 0 (4)

This is an overconstrained system of four independent

linear equations (APl = b) in the homogeneus coordinates

of Pl = Xl, Yl, Zl, that is easily solved using the linear least-

squares techniques (Pl = (AtA)−1Atb). After solving both

correspondence and reconstruction problems, non-dense 3D

maps are created like the ones depicted in figure 1

B. Pitch angle estimation

Detection range in vision based pedestrian detection ap-

plications is usually no longer than 30m due to several

constraints like camera resolution, pedestrian size, etc. Thus

flat road geometry is considered, i.e, road curvature can be

neglected in the near range. Thanks to the stereo approach

the vertical road profile can be directly extracted. The robust

correlation process reduces the number of 3D points under

the road (which is directly proportional to the amount of

correlation errors). Taking into account a base plane without

pitch change, the height of the camera relative to the base

plane and the camera vertical view angle, the origin of the

world coordinate system is placed at the intersection point

between the base plane and the lower boundary of the vertical

view angle. Figure 2 depicts the lateral projection of the 3D

points on the YOZ plane.

The number of 3D projected points over the same 2D point

in the lateral view are coded in a gray scale image. Thus the

weight of matching errors is reduced. As in [18] we consider

the vertical displacement due to roll negligible in comparison

to the displacement due to pitch. From the point of view of

Fig. 2. 3D projected points on the YOZ plane up to 30m

the world coordinate system, and varying the slope to cover

all possible pitch values, uniformly spaced rays are cast. Gray

level values (number of points) along each ray i are counted

in a histogram H(i). The histogram is normalized and the

mean value h̄ is computed. A stable jump over 2/3h̄ in the

histogram is looked for from under the road upwards. Being

i = 0 the lowest ray and i = N the highest one, pitch angle

is selected as follows:

for i = 0 to N

if (H(i) > 2

3
h̄ and H(i + 1) > 2

3
h̄ and H(i + 2) > 2

3
h̄

and H(i), H(i + 1), H(i + 2) > Hmin)
then α = αi; break;

else α = 0;

(5)

The parameter Hmin is used to avoid pitch estimation

errors when there are not enough road points detected. Figure

3 depicts three examples for positive, negative and zero pitch

angle values. The darker the ray the higher the number of

accumulated points. The estimated pitch angle is drawn in

bold.

In order to have a steady estimation of the pitch angle, a

linear Kalman filter is applied. The state vector is composed

by the pitch angle and its velocity, xk = {αk, α̇k} and

the measurement vector by the pitch angle, zk = {αk}.

The following equations show the proposed pitch angle

estimation:
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Fig. 3. Pitch angle estimation. From top to bottom: positive pitch angle,
negative pitch angle and pitch angle about 0 degrees.

~xk =

(

αk

α̇k

)

=

(

1 1
0 1

)(

αk−1

α̇k−1

)

+ ~rk state eq. (6)

zk = αk + ~ok measurement eq. (7)

where ~rk and ~ok are the state vector noise and the mea-

surement vector noise, respectively. Accordingly a smoother

pitch angle estimation is obtained. So, a transformation

matrix has to be applied in order to perform 3D points

correction:

Rα =

0

@

1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

1

A (8)

Once the longitudinal profile of the road has been ex-

tracted, and 3D points corrected, road surface points, which

are not obstacle points, can be easily removed by using their

Y coordinate value. By doing so, these points do not perturb

the clustering step.

C. Adaptive 3D Subtractive Clustering

Data clustering techniques are related to the partitioning of

a data set into several groups in such way that the similarity

within a group is larger than among groups. Normally the

number of clusters is known beforehand. This is the case of

K-means based algorithms. The needed clustering technique

should be subject to some constraints:

• The number of clusters is considered unknown, since no

a priori estimate of the number of pedestrians in scene

can be reasonably made.

• The effects of outliers have to be reduced or completely

removed in order to absorb correlation errors.

• It is necessary to define specific space characteristics in

order to group different pedestrians in the scene.

For these reasons, a Subtractive Clustering method [17]

is proposed, which is a well known approach in the field of

Fuzzy Model Identification Systems. The clustering is carried

out in the 3D space, based on a density measure of data

points. The idea is to find high density regions in 3D space.

Objects in the 3D space are roughly modelled by means

of Gaussian functions. It implies that, on principle, each

Gaussian distribution represents a single object in 3D space.

Nonetheless, objects that get too close from each other can be

modelled by the system as a single one and, thus, represented

by a single Gaussian distribution. The complete representa-

tion is the addition of all Gaussian distributions found in

the 3D reconstructed scene. Accordingly, the parameters of

the Gaussian functions are adapted in line with the depth

by the clustering algorithm, so as to best represent the 3D

coordinates of the detected pixels.

The 3D coordinates of all detected pixels are then consid-

ered as candidate clusters centers. Thus, each point pi with

coordinates (xi, yi, zi) is potentially a cluster centre whose

3D spatial distribution Di is given by the following equation:

Di =
N

X

j=1

exp

(

−
(xi − xj)

2

(

rax

2

)

2
−

(yi − yj)
2

(

ray

2

)

2
−

(zi − zj)
2

(

raz

2

)

2

)

(9)

where N represents the number of 3D points contained in a

neighborhood defined by radii ra = (rax, ray, raz). Cluster

shape can then be tuned by properly selecting the parameters

rax, ray, raz , which are related to 3D actual dimensions. As

can be observed, candidates pi surrounded by a large number

of points within the defined neighborhood will exhibit a high

value of Di. Points located at a distance well above the

radious defined by ra will have almost no influence over

the value of Di. Equation 9 is computed for all 3D points

measured after stereo reconstruction. Let pcl = (xcl, ycl, zcl)
represent the point exhibiting the maximum density denoted

by Dcl. This point is selected as the cluster centre at the

current iteration of the algorithm. Densities of all points Di

are corrected based on pcl and Dcl. For this purpose, the

subtraction represented in equation 10 is computed for all

points.

Di = Di − Dclexp

(

−
(xi − xcl)

2

(

rbx

2

)

2
−

(yi − ycl)
2

(

rby

2

)

2
−

(zi − zcl)
2

(

rbz

2

)

2

)

(10)

where parameters rb = (rbx, rby, rbz) define the neigbor-

hood where the correction of points densities will have the

largest influence. The density of data point which is close

to the first cluster centre will be reduced, so that these

data points can not become next cluster centre. Normally,

parameters (rbx, rby, rbz) are larger than (rax, ray, raz) in

order to prevent closely spaced cluster centres. Commonly
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let rbx = 1.5rax, rby = 1.5ray and rbz = 1.5raz . After

comprehensive experiments the parameters rax and ray have

been set to rax = 0.8m and ray = 1.5m, while an adaptive

value has been proposed to raz taking into account the depth

resolution of the stereo sensor. Even though stereo geometric

relationship is known, for this case, we suppose the depth

computation as follows:

z =
fxB

dx

(11)

where B is the stereo baseline length, fx is the focal length

expressed in units of horizontal pixels and dx = xl−xr is the

horizontal disparity in pixels. Depth resolution is computed

by using next equation:

∆zi = fxB

Ń

1

dxi

−
1

dxi − 1

ű

= fxB

Ń

1

d2

xi − dxi

ű

(12)

According to equations 11 and 12 the adaptive value of

raz for a 3D point pi = (xi, yi, zi) is given by:

raz = 2∆zi = 2
z2

i

fxB + zi

(13)

After the subtraction process, density corresponding to the

cluster center pcl gets strongly decreased. Similarly, densities

corresponding to points in the neighborhood of pcl get also

decreased by an amount that is a function of the distance

to pcl. All these points are associated to the first cluster

computed by the algorithm and will have almost no effect

in the next step of the subtractive clustering. In fact these

points are subtracted and restored as a 3D candidate. After

the correction of densities, a new cluster center pcl,new

is selected, corresponding to the new density maximum

Dcl,new and the process is repeated whenever the condition

expressed in equation 14 is met.

if Urel >
Dcl

Dcl,new

and Dcl,new > Umin ⇒ new cluster (14)

where Urel and Umin are experimentally tuned parameters

that permit to define a termination condition based on the

relation between the previous cluster density and the new

one, and a mimimum value of the density function. The

process is repeated, subtracting the points of each new

cluster, until the termination condition given by equation 14

is not met.

After applying subtractive clustering to a set of input data,

each cluster finally represents a 3D candidate. 2D candidates

are selected by projecting the 3D points over one of the

images and computing the box that bounds these points.

III. RESULTS

The system has been implemented on a Pentium IV at 2.4

Ghz running GNU/Linux Operating System. Using 320×240
pixel images, the complete algorithm runs at an average rate

of 20 frames/s, depending on the number of obstacles being

detected and their positions. The candidate selection method

has proved to be robust in various illumination conditions,

thanks to the adaptive canny edge detector, and distances up

to 30m. Pitch angle correction yields more accurate depth

measure, but the main advantage consists in the fact that

road lane markings, shadows, etc., can be easily detected

as non obstacle points without removing points from actual

obstacles, like pedestrians. If road points are not removed,

these ones will affect negatively the clustering process. On

the other hand if road points are not correctly removed,

obstacle points could be incorrectly eliminated and not taken

into account in the clustering process. Figure 4 depicts

two examples of the candidate selection method with and

without pitch angle correction. From the point of view of

the classification step, in a global pedestrian detection system

like in [7], 2D candidates selected in the upper row of figure

4 will consider relevant information of the obstacle as non

obstacle (road) information. In figure 5 the Kalman filter

estimation for pitch angle in a sequence is shown.

Fig. 4. Obstacle detection examples. Upper row: without pitch angle
estimation; lower row: with pitch angle correction
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Fig. 5. Kalman filter estimation and measurement for pitch angle in a
sequence

The subtractive clustering process yields excellent results.

Only 3D volumes similar to pedestrians are selected as

possible candidates like trees, bins, lamposts, motorbikes,

etc. Cars are usually splitted in two or three parts. This clus-

tering technique can be used for different kind of objects by
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Fig. 6. Upper row: several examples of oversized rax radius and non-adaptive raz one. Obstacles can be incorrectly separated in two parts due to stereo
depth resolution constraints and two obstacles can be merged in one because an oversized value of rax. Lower row: the same examples correctly detected
by using an adaptive value of raz and a correct value of rax.

configuring its 3D radius. As the parameter rax increases the

probability of merging two pedestrians in one increases. On

the other hand a very small value of rax causes undesirable

partitions by dividing one pedestrian in two. The adaptive

value of raz corrects obstacles which are splitted in two

parts, due to stereo detph resolution constraints. On average

our candidate selection mechanism generates 8 windows per

frame which is a reasonable amount of obstacles for being

classified and tracked in next stages. Figure 6 depitcs several

examples with both incorrect (upper row) and correct (lower

row) configurations for the radii.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we have described a stereo vision based

obstacle detection system with the aim of creating a can-

didate selection method for a global pedestrian detection

system. Non dense 3D maps were created by using edge

points. A robust correlation method reduced the amount of

stereo-matching errors. Pitch angle was estimated so that

a correct obstacle-road separation was possible. In addition

depth accuracy was increased and the number of points with

which pedestrians were detected was improved. An adaptive

subtractive clustering technique has proved to be robust in

order to detect generic obstacles with volumes similar to

pedestrians. As a future work a hardware implementation of

the system would be advisable with the aim of using higher

image resolution, without losing performance, and thus more

accurate depth measures and higher range values could be

obtained.
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