
DialogOS: Simple and extensible dialog modeling

Alexander Koller1, Timo Baumann2, Arne Köhn3

1Saarland University 2Carnegie Mellon University 3Universität Hamburg
koller@coli.uni-saarland.de, tbaumann@cs.cmu.edu, koehn@informatik.uni-hamburg.de

Abstract
We present the open-source extensible dialog manager DialogOS.
DialogOS features simple finite-state based dialog management
(which can be expanded to more complex DM strategies via
a full-fledged scripting language) in combination with inte-
grated speech recognition and synthesis in multiple languages.
DialogOS runs on all major platforms, provides a simple-to-use
graphical interface and can easily be extended via well-defined
plugin and client interfaces, or can be integrated server-side into
larger existing software infrastructures. We hope that DialogOS
will help foster research and teaching given that it lowers the bar
of entry into building and testing spoken dialog systems and pro-
vides paths to extend one’s system as development progresses.

1. Introduction
With the popularity of spoken dialog systems in everyday digital
assistants, there is an increasing interest both in academia and
industry in tools that make it simple and quick to develop such
dialog systems. However, while there is no shortage of dialog
platforms of varying levels of complexity and robustness, most of
these systems require writing dialog specifications in specialized
languages such as VoiceXML. This raises the barrier of entry
for getting started with such systems, and restricts their use to
professionals who can invest the time into learning how to use
them.

In this paper, we describe DialogOS1, a spoken dialog sys-
tem which is simple to get started with, but also offers advanced
features and can be easily extended and integrated with exter-
nal tools. DialogOS is a finite-state dialog system in which
the dialog graph is “drawn” in a GUI (see Figure 1) by placing
nodes (e.g. for speech recognition and synthesis) on a canvas.
DialogOS was originally a commercial system [1], developed by
CLT Sprachtechnologie GmbH, and was popular as a teaching
tool both in academia [2] and in high schools2. Here we describe
a modernized version of DialogOS, which was just released as an
open-source project, after the rights to DialogOS were acquired
by Saarland University. DialogOS is written in Java. In contrast
to the commercial version, which was limited to Windows, the
new open-source version runs on Windows, MacOS, and Linux.

Below, we sketch the core functions of DialogOS and then
discuss advanced use cases and the integration with external
software.

2. DialogOS
At its core, DialogOS is a finite-state dialog system. A dialog
consists of nodes, each of which performs one specific operation,
such as speaking one utterance with a TTS system or processing
one user utterance with an ASR system. Nodes can be con-
nected with edges; for instance, an ASR node may have multiple

1https://www.dialogos.app/
2http://www.debacher.de/wiki/DialogOS

Figure 1: The main DialogOS window.

outgoing edges for the different recognition outcomes. These
nodes and edges can be placed on the canvas using drag and drop.
While the dialog is executed, DialogOS walks through nodes
one at a time, following the edges from one node to another. The
dialog terminates when an End node is reached. It can be further
structured into subgraphs.

DialogOS goes beyond a purely finite-state model in that
it can store arbitrary values in variables, which are global to
the dialog. Variables can be set in ASR and other input nodes,
based on matching regular expressions or speech recognizer
grammars. They can then be processed in Script nodes, and
Conditional nodes can branch to different parts of the dialog
depending on the values of variables and they can be used as
parts of expressions in TTS nodes. DialogOS variables support
all datatypes available in the Java standard library, including lists
and dictionaries, and Script nodes can be programmed either
with a DialogOS-specific scripting language or with the general-
purpose language Groovy,3 a dynamically typed language with
syntax similar to Java.

Because DialogOS is meant to make it easy to get started,
it comes bundled with a number of key components, including
MaryTTS [3] for speech synthesis and CMU Sphinx-4 [4] for
speech recognition. Synthesis and recognition models can simply
be installed over the Internet from within the GUI. DialogOS
also has builtin support for Lego Mindstorms robots, using nodes
for controlling motors, reading sensor values, and starting and
stopping programs on a Mindstorms robot. Thus the DialogOS
distribution contains all the parts, out of the box, for building
“talking Lego robots”.

3. Extending DialogOS
While DialogOS aims to make it simple to develop simple di-
alogs, it is also designed to connect to existing software, using
plugins, clients, or Groovy. In this way, DialogOS can be ex-
tended to support a wide variety of domain-specific functionality.

3http://www.groovy-lang.org

Interspeech 2018
2-6 September 2018, Hyderabad

167



Plugins are modules which provide new node types to
DialogOS. The MaryTTS, Sphinx, and Lego nodes that are bun-
dled with DialogOS are implemented as plugins. In addition,
users of DialogOS can develop their own plugins, which are Java
libraries that implement the DialogOS plugin API. The node
types of these plugins become visible within the DialogOS GUI
when these libraries are added to the classpath. This makes it
possible to integrate different speech recognizers and TTS sys-
tems into DialogOS, or to develop entirely new node types, such
as for database queries or custom backend integrations.

If developing a plugin incurs too much overhead, e.g. be-
cause an extension is only needed for a single dialog, Groovy
nodes can be used to extend the functionality from within the
dialog; DialogOS provides an editor with syntax highlighting.
Because Groovy nodes are able to import and make use of all
libraries added to the classpath, any JVM-based library can be
used to extend the dialog’s functionality.

Clients are standalone programs which connect to DialogOS
over TCP/IP sockets. DialogOS can send messages to a client
using an Output node, and receive messages from the client
using an Input node, which – like a speech recognition node –
may branch to different output edges depending on the message.
Clients written in Java can simply implement the DialogOS
client API, which hides the burden of managing the inter-process
communication from the developer. In principle, clients could
also be written in other languages, such as Python.

4. DialogOS in practice
DialogOS has been used extensively by students at the middle
school, high school, and academic levels. It is ideally suited
for an educational setting because its learning curve is gentle
and no programming skills are required to build a nontrivial
spoken dialog system; the builtin Lego interface helps generate
excitement among students. The Java plugin interface allows for
interior differentiation in inhomogenous learner groups.

Almost as a side effect, dialog development with DialogOS
teaches students about fundamental concepts of computer sci-
ence, including finite-state automata (and their limitations that
can be overcome by using variables) and context-free grammars
(used for speech recognition). The concept of abstraction is
prevalent in DialogOS, e. g. when using sub-dialogs or when
deciding on how to implement a system’s capabilities: in the
dialog graph, as a script, or as an external client.

However, DialogOS is not limited to toy applications in the
educational domain: Because of its extensible design, DialogOS
is also suitable for research on dialog systems. In such a setting,
DialogOS is often used to develop the dialog in the GUI, but exe-
cute the dialog in a windowless mode which permits deployment
on a server or an embedded system. External clients can perform
arbitrarily complex tasks, including running a whole separate
dialog system, as in [5], where incremental speech processing
was performed for parts of the dialog and DialogOS was used for
scaffolding the conventional, non-research parts of the system.
Since its release as open-source, DialogOS has also been used
as the integrated dialog manager in a larger (and proprietary)
software environment [6]. In that case, DialogOS was used as a
frame-based DM and used externally provided speech recogni-
tion, synthesis, understanding and generation components; the
integration was performed by implementing a plugin that pro-
vided its own node types for interaction with the environment.
The graphical interface of DialogOS allowed to rapidly prototype
and change dialog plans during testing with minimal required
expertise.

5. User studies with DialogOS
DialogOS supports researchers in conducting empirical user
studies in two ways: Dialogs can be logged for further analysis,
and parts of the dialog can be implemented by a Wizard-of-Oz.

The logging facility creates an XML-based log of each run
of a dialog: It records the initial settings as well as an XML
structure for every node visited, including the ID of the node and
timestamps for entering and exiting. Each node adds relevant
meta-data such as the recognized input for recognition nodes,
the generated output for TTS nodes, or changes to variable as-
signments for script nodes. Sub-dialogs are nested within the
XML structure to represent the dialog flow. Additional nodes
introduced by plugins can add their own metadata.

For Wizard-of-Oz experiments, the behavior of certain nodes
can be controlled by a researcher: when entered, the possible
outcomes are shown and the intended one can be selected. This
allows researchers to replace dialog components with human-in-
the-loop states imitating the component’s behavior. While the
dialog is running, the wizard is shown the dialog graph (as in
Figure 1) with the currently active node highlighted.

6. Conclusion
We have presented DialogOS, a recently open-sourced spoken
dialog system that is built with simplicity and extensibility in
mind. With DialogOS it is easy to build one’s own dialog models
within minutes and with only a minimum of expertise required,
making it an ideal tool for teaching. Yet, DialogOS provides
all features necessary to build full-fledged dialog systems for
research and application.

In the future, we plan to actively improve and extend
DialogOS, e.g. by adding new plugins and features for
collaboration, dialog version control, database and professional
robotics integration (via ROS). We cordially invite contributions
from the community.

Acknowledgments. We are indebted to Manfred Pinkal and
Diana Steffen for their support in making DialogOS an open-
source project. We are also grateful to the students at Univer-
sität Hamburg who helped clean up, modernize, and extend
the source code: Bri Burr, Vincent Dahmen, Max Friedrich,
Dorothee Geiser, Otis Juliusson, Annika Kolaska, Till Kollenda,
Nicolas Schroh, Phil Sehlmeyer, and André Simon. This work
was partially supported by Verizon in the CMU-InMind project.

7. References
[1] D. Bobbert and M. Wolska, “Dialog OS: An extensible platform for

teaching spoken dialogue systems,” in Decalog 2007: Proceedings
of the 11th Workshop on the Semantics of Dialogue, R. Artstein and
L. Vieu, Eds., Trento, Italy, 2007, pp. 159–160.

[2] A. Koller and G.-J. Kruijff, “Talking robots with LEGO Mind-
storms,” in Proceedings of the 20th International Conference on
Computational Linguistics (COLING), Geneva, 2004.

[3] M. Schröder and J. Trouvain, “The German text-to-speech synthesis
system MARY: A tool for research, development and teaching,” in
Speech Synthesis Workshop, Perthshire, 2001.

[4] P. Lamere, P. Kwok, E. Gouvea, B. Raj, R. Singh, W. Walker,
M. Warmuth, and P. Wolf, “The CMU Sphinx-4 speech recognition
system,” in Proceedings of ICASSP, 2003.

[5] T. Baumann, M. Paetzel, P. Schlesinger, and W. Menzel, “Using
affordances to shape the interaction in a hybrid spoken dialogue
system,” in Proceedings of ESSV, P. Wagner, Ed., 2013, pp. 12–19.

[6] V. Tsai, T. Baumann, F. Pecune, and J. Cassell, “Faster responses
are better responses: Introducing incrementality into sociable virtual
personal assistants,” in Proceedings of IWSDS, 2018.

168


