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Abstract
The auditory filterbank has been a well-accepted and important
tool for speech feature extraction. It decomposes the speech
signal into subbands usually on an equivalent rectangular band-
width frequency scale before further subband analysis and pro-
cessing, such as auto-correlation and cross-correlation. How-
ever, the choice of the number of subbands and subband cen-
ter frequencies for a given frequency range has been essentially
empirical in the literature. Moreover, correlation of subband
signals may not produce distinct peaks of coefficients for fea-
ture extraction. This paper proposes a novel frequency cover-
age metric to calculate the required number of subbands for
a given frequency range. It also presents a new subband en-
coding model for correlation processing, inspired by psychoa-
coustic studies and statistical analysis. The proposed frequency
coverage metric and the subband encoding model are applied
to a pitch estimation method as an example of their possible
implementations in the speech feature extraction. Compared
with state-of-the-art methods, evaluation results demonstrate
the benefits of the proposed methods.
Index Terms: auditory filterbank, frequency coverage, subband
encoding, pitch estimation, speech feature extraction, CASA.

1. Introduction
Subband decomposition using an auditory filterbank has been
a popular method in speech signal analysis. It can be applied
to a variety of speech feature extraction applications, such as
pitch estimation and tracking [1, 2, 3, 4], speaker localization
and tracking [1, 5, 6, 7], and speaker recognition [8, 9].

A critical part of the subband approach in speech processing
is the selection of center frequencies for subband filters, accord-
ing to the chosen frequency range. This is usually addressed by
choosing a frequency scale and the corresponding number of
subbands. Various frequency scales have been used in the pitch
estimation literature, including the logarithmic [10], the Bark
[11] and the popular equivalent rectangular bandwidth (ERB)-
rate scales [12]. However, in the current literature, the number
of subbands for a given frequency scale in the given frequency
range largely varies from one implementation to another, essen-
tially as empirical choices with no clear mathematical motiva-
tions. In [13], a total of 20 subbands are used for frequency
range of 330Hz to 3700Hz, while [2] implements 128 gamma-
tone filters between 80Hz and 5000Hz, and [4] used 48 sub-
bands.

After subband decomposition via the auditory filterbank,
auto-correlation or cross-correlation operations are often ap-
plied to subband signals for speech feature extraction [2, 3, 4,
9]. In fact, the performance can be improved by encoding the
subband signals before the correlation operations, and various
heuristic encoding models can be found in the literature [5, 6, 7].

This paper proposes in Section 3 a novel frequency cover-
age metric for the selection of the number of subbands of a fil-
terbank, derived from a generalized form of the ERB-rate scale.
Section 4 presents the new subband encoding model inspired
by psychoacoustic and statistical studies. An application of the
proposed methods in pitch estimation is provided in Section 5.
Section 6 and 7 give the numerical studies and conclusions, re-
spectively.

2. Background - Subband Decomposition
Using an auditory filterbank to decompose the speech signal,
the resulting subband signal is denoted as

x(b)(t) = g(b)(t) ∗ x(t), (1)

where x(t) is the speech signal, g(b)(t) is the time-aligned filter
impulse response of subband b, t is time indix, and integer 1 ≤
b ≤ Nb. Integer Nb is the total number of subbands, and ∗
the convolution operator. Common auditory filters include the
gammatone filter [14, 15, 8], gammachirp filter, etc. as well as
their variants. In this paper, we use the gammatone filter, which
can be expressed as

g(b)(t) = g̃(b)(t) · cos(2πf
(b)
C t), (2)

where
g̃(b)(t) = (t+ td)

ϑ−1e−2πf
(b)
b

(t+td), (3)

integer ϑ is the order of filter (ϑ = 4 in this paper), td is time
delay for alignment between filter bands [15], f (b)

b scaling fac-
tor for the bandwidth [14, 8], and f (b)

C is the center frequency
of filter band b.

3. A New Frequency Coverage Metric
To obtain the subband center frequency f (b)

C for a given audible
frequency range [fmin, fmax], the ERB-rate scale (ERBS) as
developed in [12] is often applied, and equi-distant frequencies
on the ERBS are then selected based on an empirically chosen
number of subbands. Here we propose a metric in order for the
derivation of the number of subbands for an arbitrary frequency
range.

Denote the general form of ERB as

υ(f) = D + E · f, (4)

where D = 24.7, and E = 0.108 as given in [12], and f the
frequency.

From (4), the resulting ERBS becomes:

Υ(f) ,
∫

1

υ(f)
df = E′ lg(1 +D′ · f), (5)
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with the boundary condition Υ(0) = 0. Here D′ , E
D

and
E′ , 1

E·lg e . As given in [12], E′ = 21.4, and D′ = 0.00437.
The proposed “frequency coverage” metric is defined as

η
(b)
C ,

1
2
· (f (b+1)

B + f
(b)
B )

f
(b+1)
C − f (b)

C

, (6)

where f (b)
B denotes the filter bandwidth of subband b. Appar-

ently, a filterbank has consistent and full frequency coverage
when η(b)C ≡ 1. For η(b)C < 1, there are some frequencies
falling out of the pass-bands of the filterbank, which may re-
sult in estimation error when these frequencies include the de-
sired frequency components. The case of η(b)C > 1 still leads to
full frequency coverage, but there are redundancies as some fre-
quency components are captured and analyzed multiple times.

The linear relationship between bandwidth and center fre-
quency holds for certain types of filters. Particularly, for the
gammatone filter we have [15]:

f
(b)
B = Kϑ · f (b)

b = Kϑ · υ(f
(b)
C ), (7)

where Kϑ is a constant for a given filter order ϑ as given in (8)
[15]. In particular, K4 = 0.887.

Kϑ = 2
√

21/ϑ − 1 ·
[π(2ϑ− 2)!2−(2ϑ−2)

(ϑ− 1)!2

]−1

. (8)

The subband center frequencies in the given frequency
range are distributed equidistantly on the ERBS, i.e.:

f
(b)
C = Υ−1(

(Nb − b) ·Υ(fmin) + (b− 1) ·Υ(fmax)

Nb − 1
),

(9)
where Υ−1(·) is the inverse function of Υ(·).

Therefore the number of subbands Nb can be derived from
(6), (7) and (9):

Nb = round
(

1 +
ln(D+E·fmax

D+E·fmin )

ln(
2η

(b)
C

+E·Kϑ
2η

(b)
C
−E·Kϑ

)

)
. (10)

Thus the frequency coverage metric provides a consistent way
for calculating the number of subbands in a given frequency
range. Once Nb is obtained, the center frequencies can also
be calculated from (9). Since we keep η(b)C the same for all
subbands, ηC is used hereafter for simplicity of denotation.

4. A New Subband Encoding Model
After the subband decomposition, we first half-wave rectify the
subband signal (1) as in [16, 17, 18].

x̂(b)(k/fs) =
1

2
· (x(b)(k/fs) + |x(b)(k/fs)|), (11)

where the k ∈ Z is the discrete time index and fs > 0 the
sampling frequency.

From (7), each subband has a narrow passband for frequen-
cies not too low. Thus by approximating the subband signal
with sinusoid (see e.g. middle panel of Fig. 1), we can rewrite
x̂(b)(k/fs) in (11) as a convolution of the cosine term with the
local peaks (the approximation is reasonable as the signal peaks
have the dominant effect on results in correlation operations):

x̂(b)(k/fs) ≈ ζ(b)cosine(k) ∗
∑

k̂
(b)
n ∈K̂(b)

S̃(b)(k/fs) · δ(k − k̂(b)n ),

(12)

where δ(·) is the Dirac delta function, S̃(b)(k/fs) is the sub-
band envelope, and ζ(b)cosine(k) is the non-negative part of the
cosine term with peak at k = 0, i.e.

ζ
(b)
cosine(k) , cos(2πf

(b)
C · k/fs), k ∈ [− fs

4f
(b)
C

,
fs

4f
(b)
C

],

(13)
K̂(b) , {k̂(b)n | n = 0, 1, ...}, and k̂(b)n is the index of a local
peak (hence S̃(b)(k̂

(b)
n /fs) ≡ x(b)(k̂(b)n /fs))

k̂(b)n = arg max
k

x̂(b)(k/fs), ∀ k ∈ (k
(b)
n−, k

(b)
n+), (14)

k
(b)
n−, k

(b)
n+ are consecutive zero-crossings of x̂(b)(k/fs) that sat-

isfy
x̂(b)(k/fs) > 0, ∀ k ∈ (k

(b)
n−, k

(b)
n+). (15)
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Figure 1: Subband encoding model (top panel), a subband sig-
nal from the filterbank, its half-wave rectified and encoded sig-
nal (middle panel), and normalized auto-correlation coefficient
of respective signals (bottom panel).

Usually correlation operations of these subband signals are
used for speech feature extraction, but the slow-changing co-
sine term can make the peak widespread or even cause spurious
peaks in correlation coefficients. Taking the pitch estimation
for example, apparently the pitch is related to the time inter-
vals between peaks as denoted by the scaled delta functions, i.e.
S̃(b)(k/fs) · δ(k − k̂

(b)
n ) as in (12). The problem is that the

voiced speech signal is quasi-periodic, and the noise can also
offset the time indices of peaks, which affects the correlation
coefficients. Therefore, inspired by the approaches of compu-
tational auditory scene analysis (CASA) [8, 19], we propose to
encode the subband signals as convolution of the scaled delta
functions with a symmetrical encoding model (as shown in top
panel of Fig. 1), which in effect replaces the cosine term in (12):

ζp(k) ,
{
e−|k|, k ∈ [−5, 5]

0, otherwise,
(16)

where the peak decays to 5% of its strength in about 0.2ms at
a sampling rate of fs = 16000S/s (i.e. 16000 samples per sec-
ond). The encoding model aligns with the psychoacoustic ob-
servation of the exponential decay of the synaptic cleft contents
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from the hair cell in the organ of Corti [19]. It is symmetrical to
avoid bias in the correlations. Moreover, the encoding model is
also supported by the observation of the Laplacian distribution
of the period of peaks versus the deviations [2, 20], except that
for simplicity we discard (truncate) smaller values in (16) and
the constant coefficient for the exponential term is 1 as it does
not affect the resulting normalized correlation coefficients.

The resulting encoded subband signal from (12) and (16) is

x(b)e (k) = ζp(k) ∗
∑

k̂
(b)
n ∈K̂(b)

x(b)(k/fs) · δ(k − k̂(b)n ). (17)

The top two panels of Fig. 1 depict the encoding model, a seg-
ment of a subband signal, its half-wave rectified signal and its
encoded signal respectively. Normalized auto-correlation coef-
ficients given in the bottom panel are to be further discussed
next in the pitch estimation application.

5. Application in Pitch Estimation
The proposed frequency coverage metric and subband encoding
model can be used in various speech feature extraction applica-
tions. Here we present a pitch estimation method as an example.

The pitch frequency range is denoted as [F0min, F0max].
In this paper, we chooseF0min = 60Hz, andF0max = 500Hz
to cover the pitch range of most speakers [21, 22]. Accord-
ingly, the minimum subband frequency is chosen as fmin =
F0min = 60Hz. It has been pointed out that while low fre-
quency auditory nerve fibers of inner hair cells tend to phase
lock to pitch stimulus, those of frequencies above 1300Hz do
not [13]. Thus we choose fmax = 1270Hz in this paper [13].
Hence for ηC = 1 we can get Nb = 18 from (10) for the fre-
quency range of [60, 1270]Hz.

The encoded subband signals are further processed via
auto-correlation in frames of length ncorr = d2 · fs/F0mine
and in step size of nstep ∈ N. The range of sample de-
lays is dτ ∈ [dmin, dmax], where dmin = bfs/F0maxc,
dmax = dfs/F0mine. Here b·c denotes the largest integer less
than or equal to a given number, while d·e denotes the smallest
integer greater than or equal to a given number.

Normalized auto-correlation coefficients (NAC) for en-
coded subband b in the jth frame can be calculated using

A(b)(j, dτ ) =

∑(j−1)·nstep+ncorr−dτ
k=(j−1)·nstep+1 x̃

(b)
e (k) · x̃(b)e (k + dτ )

∑(j−1)·nstep+ncorr
k=(j−1)·nstep+1 [x̃

(b)
e (k)]2

,

(18)

where x̃(b)e (k) is x(b)e (k) with dc offset removed for the normal-
ization.

In each time frame, we use the average of the NAC over
subbands, i.e. A∑(j, dτ ) = 1

Nb

∑Nb
b=1A

(b)(j, dτ ) to obtain
the correlogram. Then the pitch estimate in time frame j is
F̂0{j} = {fs/d̂τ}, where d̂τ is the sample delay that corre-
sponds to the peaks in A∑(j, ·) and A∑(j, d̂τ ) ≥ TA∑ . If d̂τ
does not exist, F̂0{j} = ∅. The strongest peak over the thresh-
old TA∑ = 0.125 (i.e. −9dB) is used as the pitch estimate.

To show the effectiveness of the proposed encoding model,
Fig. 2 provides a single pitch example comparing the proposed
estimator using the encoded subband signals (17) and a ref-
erence method using half-wave rectified subband signals (11).
The top row provides the resulted pitch estimation results using
the proposed method and the reference method. We can see that
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Figure 2: Pitch estimation results (female speech with babble
noise, SNR=10dB). Left column gives the pitch estimation re-
sults from proposed method. Right column shows the results
using the half-wave rectified subband signals.

the proposed method produces more valid estimates, while the
reference method produces considerably more errors. The mid-
dle row depicts the correlogram from the proposed method and
the reference method. The proposed method produces more dis-
tinct pitch patterns. The bottom row shows the averaged auto-
correlation results at frame 64, where the proposed method cor-
rectly produces the pitch estimate, while the reference method
produces a sub-harmonic error. Therefore it is clear that the pro-
posed method has distinct peaks by virtue of the proposed pitch
encoding, while the peaks of the reference method are compar-
atively widespread. Moreover, using the raw half-wave rectified
subband signals produces more sub-harmonics errors. For both
cases, spurious estimates when there are no voiced sounds in
the ground truth speech signal are due to the babble noise.

6. Numerical Studies
In this section, we compare the pitch estimation results using
the proposed methods with other state-of-the-art pitch estima-
tors, namely the RAPT [23], YIN [24], PEFAC [25] and SHRP
[10], in noisy environments at various levels of signal-to-noise
ratio (SNR). We use the CSTR corpus [26, 27], which includes
50 English sentences from a male and a female speaker respec-
tively and their corresponding pitch ground truth (laryngograph
signal). The noise signals used are from the AURORA database
[28, 29], which are composed of 8 types of noises from different
environments.

6.1. Performance Metric

We use the standard gross pitch error (GPE) [20, 30] for evaluat-
ing the performance GPE = Nerr

Nv
, where Nerr is the number

of frames with pitch estimates that deviate from ground truth
by more than 5%, and Nv denotes the total number of voiced
frames as reported by both the ground truth and the estimation
method.

6.2. Test Results

In Fig. 3, we show the GPE results for all the methods with var-
ious types of noise and SNR levels. Here ηC = 1 is used. The
parameters for RAPT, YIN, PEFAC and SHRP are the default
values as provided in respective programs (hence might not be
the most optimal). We choose a frame length of 33.3ms for our
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Figure 3: GPE results for pitch estimation. Speech signals are from the CSTR database, while the additive noises are from the Aurora
database. Noise types are respectively (a) airport, (b) babble, (c) car, (d) exhibition, (e) restaurant, (f) street, (g) subway, (h) train.

proposed method, which is two periods of the minimum F0 fre-
quency (F0min = 60Hz). We can see from Fig. 3 that all meth-
ods degrade as the noise get stronger. However, the proposed
method outperforms the other state-of-the-art methods in most
cases. This can be mainly attributed to the proposed subband
encoding method as well as the NAC as discussed in Sections 4
and 5 respectively. The performance of the proposed method is
worst at the babble noise or the restaurant noise, both of which
are basically random mixtures of human speech signals.

Fig. 4 further provides the evaluation results of the pro-
posed frequency coverage metric, where we show the impact
of the proposed frequency coverage ηC on the GPE results for
the male and female speakers of the CSTR corpus. Here the
sound signals are the same as used in Fig. 3, but the GPE is
an averaged result over all noise types. We can clearly see that
despite the changes of SNR, the accuracy improves (the gross
pitch error decreases) as ηC increases until ηC = 1, and the
GPE is comparatively stable for ηC ∈ [1, 1.5]. We know that
as ηC increases, the number of subbands also increases, thus
requiring more computations. Hence as we have expected in
Section 3, ηC = 1 can be chosen for a good balance of the
estimation accuracy and the computational load.

7. Conclusions and Future Studies
This paper presents a novel frequency coverage metric for the
selection of the number of subbands and subband center fre-
quencies for an auditory filterbank, a new subband encoding
model, and an implementation of the proposed methods in the
pitch estimation. Comparative study versus the state-of-the-arts
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Figure 4: GPE versus frequency coverage ηC (averaged over
all noise types).

methods shows the benefits of the proposed methods. For future
work, other possible implementations of the proposed methods
in speech feature extraction include, but are not limited to, the
pitch tracking, speaker localization, speech separation, recogni-
tion and transcription.
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