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Abstract 

This paper presents a multi-frame quantization of line spectral 

frequency (LSF) parameters using a deep autoencoder (DAE) 

and pyramid vector quantizer (PVQ). The object is to provide 

sophisticated LSF quantization for the ultra-low bit rate 

speech coders with moderate delay. For the compression and 

de-correlation of multiple LSF frames, a DAE possessing 

linear coder-layer units with Gaussian noise is used. The DAE 

demonstrates a high degree of modelling flexibility for 

multiple LSF frames. To quantize the coder-layer vector 

effectively, a PVQ is considered. Comparing the discrete 

cosine model (DCM), the DAE-based compression shows 

better modelling accuracy of multi-frame LSF parameters and 

possesses an advantage in that the coder-layer dimensions 

could be any value. The compressed coder-layer dimensions 

of the DAE govern the trade-off between the modelling 

distortion and the coder-layer quantization distortion. The 

experimental results show that the proposed algorithm with 

determined optimal coder-layer dimension outperforms the 

DCM-based multi-frame LSF quantization approach in terms 

of spectral distortion (SD) performance and robustness across 

different speech segments. 

Index Terms: Line spectral frequency (LSF), quantization, 

deep autoencoder (DAE), pyramid vector quantizer (PVQ) 

1. Introduction 

With regard to linear predictive coding (LPC) based speech 

coders, the quantization of line spectral frequency (LSF) 

parameters is a major issue [1]. LSF parameters are 

mathematically equivalent to LPC parameters, providing very 

good performance with regard to quantization and 

interpolation [1, 2]. LSF parameters are usually extracted, 

quantized, and transmitted on a frame-by-frame basis in 

speech coders. High correlation between consecutive LPC 

parameters has been evidenced and it can be exploited for LSF 

quantization [2]. In order to reduce the encoding rate, the 

multi-frame coding of LSF parameters has been extensively 

applied to ultra-low bit rate speech coders with moderate delay, 

such as enhanced mixed excitation linear prediction (MELPe) 

and its variations [3–6]. The block-constrained trellis coded 

vector quantization schemes were recently developed for 

quantization of multiple frames LSF parameters [7]. 

An efficient discrete cosine model (DCM) [2] was 

introduced to model the LSF time-trajectory, and consecutive 

LSF frames were jointly quantized to exploit their high inter-

frame correlation. At the encoder, the DCM coefficients of the 

time trajectory of multiple LSF frames are calculated and 

switched to a reduced set of LSF vectors. Then, the reduced 

set of LSF vectors are quantized via a multi stage vector 

quantization (MSVQ). At the decoder, the corresponding 

quantized DCM coefficients are recalculated from the 

quantized version of the reduced LSF vectors. Finally, the 

quantized multiple LSF vectors are derived from the quantized 

DCM coefficients. As shown in [2], the DCM-based approach 

exhibits better performance than the frame-by-frame and other 

multi-frame quantization methods. 

In the DCM-based approach, inter-frame correlation 

between consecutive LSF frames is exploited and the reduced 

LSF set still shows a correlation. In this paper, we propose the 

combination of a deep autoencoder (DAE) [8] and pyramid 

vector quantizer (PVQ) [9] for the quantization of multiple 

LSF frames. Inspired by the successful usage of DAE for 

dimensionality reductions [8], we train a DAE whose coder-

layer possesses linear units with Gaussian noise to model 

multiple LSF frames. The DAE demonstrates a high degree of 

modelling flexibility for multiple LSF frames and it possesses 

better modelling accuracy than the DCM. In the encoder, the 

lower layers of the DAE are used to compress the multiple 

LSF frames to a coder-layer vector with reduced dimensions. 

Both inter-frame and intra-frame correlations of consecutive 

LSF frames have been exploited by the DAE since the 

compressed coder-layer units are found to be uncorrelated. 

The PVQ proposed by Fischer provides better performance 

than the optimal scalar quantizer for a memoryless Gaussian 

source [9]. The low-dimensional coder-layer vector is then 

quantized by the PVQ. In the decoder, the quantized coder-

layer vector is applied to the upper layers of the DAE to 

reconstruct the quantized multiple LSF frames. The 

experimental results show that the proposed algorithm 

produces better spectral distortion (SD) performance than the 

combination of a DCM and MSVQ. 

2. Multiple LSF Frames quantization using 

a deep autoencoder and PVQ 

2.1. Long-term quantizer for multiple LSF frames 

The proposed long-term quantization block diagram for 

multiple LSF frames is depicted in Figure 1. At the encoder, N 

consecutive LSF frames f1,N are provided as the DAE input. 

Two lower layers of the DAE are used to compute the coder-

layer vector h2. The coder-layer vector h2 has a Gaussian 

distribution and each unit of the vector is found to be 

uncorrelated. The PVQ is a type of lattice quantizer, with the 

codewords selected as the cubic lattice points which lie on the 

surface of a pyramid [9]. Thus, PVQ does not require memory 

for codebook storage and it could be used as an efficient 
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vector quantizer for h2. At the decoder, the quantized coder-

layer vector 
2ĥ  is then used to reconstruct the N consecutive 

LSF frames 
N1,

f̂  using the two upper layers of the DAE. 

2.2. Deep autoencoder for multiple LSF frames 

It was introduced in [10] that restricted Boltzmann machines 

(RBMs) are good at modelling acoustic features with cross-

dimensional correlations. The conventional RBMs, assuming 

that both the visible and hidden units are binary data, are 

referred to as Bernoulli-Bernoulli RBMs [11].  Hinton 

formulated an RBM while assuming the input to be a Gaussian 

distribution to apply real-valued data such as LSF, referred to 

as the Gaussian-Bernoulli RBM [8, 11]. It was shown in [12, 

13] that LSF could be well modelled by deep neural network 

(DNN) with multiple RBMs. The DAE is trained to make the 

output layer vectors as similar possible to input vectors and it 

is considered as special type of DNN. 

The unsupervised pre-training algorithm [14] is a useful 

technique to initialize the DNN, and its potential benefits have 

been previously discussed. This algorithm guides learning to 

reduce the generalization error; hence, pre-trained neural 

networks usually perform better than conventional neural 

networks in terms of training error. As presented in the upper 

part of Figure 2, a stack of multiple restricted Boltzmann 

machines (RBMs) [15] are pre-trained to learn a deep 

generative model of N consecutive LSF frames, f1,N. The 

popular greedy learning algorithm is used to train the deep 

generative model in a layer-by-layer fashion [15]. RBM1, 

which is needed to create a higher-level representation of the 

visible training data, is estimated first. RBM1 should have 

been the Gaussian-Bernoulli RBM with linear visible variables 

and binary hidden units, because the DAE is fed with the real-

valued N consecutive LSF vectors. The first layer parameters 

are then frozen, and the reconstructed samples from RBM1 are 

used to train RBM2. RBM2 is the Bernoulli-Gaussian RBM 

with binary visible and linear hidden units. During the layer-

wise training, the parameters of each RBM are updated 

through efficient contrastive divergence learning [15]. After 

the layer-by-layer pre-training, the RBMs are unfolded by 

using its weight matrices to create a deep five-layer 

autoencoder network [8], as seen in the lower part of Figure 2. 

The lower layers of the DAE uses the matrices to encode the 

input N successive LSF vectors and the upper layers use the 

matrices in the reverse order to decode the input. The DAE is 

then fine-tuned to minimize the reconstruction error. The N 

consecutive LSF frames reconstruction process is defined as 

follows [16]: 

1f ( ), 1 1,l l l l l l Lh W h b                   (1) 

where hl represents the output of the lth layer, (Wl,bl) denotes 

the weight and bias parameters of the lth layer, respectively, L 

denotes the number of hidden layers, and fl(●) signifies the 

activation function. h0 represents the input layer features and 

is initialized as the N consecutive LSF vectors, f1,N. The 

estimated N consecutive LSF frames 1, Nf  equals to the output 

layer vector hL+1. The activation function of the first and third 

hidden layers are sigmoidal, while the activation function for 

second hidden layer and output layer are linear. The fine-

tuning procedures can be seen in the lower part of Figure 2. 

The mean square error (MSE) criterion between the original 

and estimated N consecutive LSF vectors is used to optimize 

the DAE [8, 15]. The MSE is minimized as follows:  
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where 
1, ( )N mf  and 

1, ( )N mf  represent the original and 

reconstructed N consecutive LSF vectors for the sample index 

m, respectively, with M denoting the size of the mini-batch. 

The hidden units of RBM2 are referred to as the coder-layer of 

the DAE. Modelling error is defined as the difference between 

the reconstructed and original LSF vectors. We train the 

RBM2 linear hidden units with Gaussian noise because our 

study determines that a fine-tuned DAE with linear coder-

layer units demonstrates better modelling accuracy than with 

binary units.  

2.3. Quantization of the coder-layer units 

The vector quantizer for h2 is designed on the pyramid given 

by [9]: 

2 2

1

( , ) : ( ) ,
pL

i

S L r h i rh                          (3) 

where r is the radial parameter that indexes the pyramid S(Lp,r) 

and Lp represents the dimension of the coder-layer vector h2. 

For moderate size dimensions, the relative variance of r 

maybe appreciable and a product code PVQ [9] can be used to 

reduce the quantization distortion significantly. The product 

code pyramid possesses identical relative orientations of the 

output vectors on each pyramid, and the pyramids are indexed 

by the quantized versions of r.  The quantity and location of 

output vectors on each pyramid are selected to minimize the 

average distortion. In the product code PVQ, a single pyramid 

VQ with 2RpLp output levels is designed for the output vectors, 

and a scalar quantizer (Max quantizer [17]) with 2Rr outputs 

levels is designed for r. The average rate per dimension Rp and 
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Figure 2: Deep autoencoder architecture and training 
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Figure 1: Block diagram of the proposed long-term quantizer for 

multiple LSF frames. 

 

3554



the scalar quantizer Rr are constrained to satisfy the following 

equation: 

,p p r pR L R RL                                  (4) 

where R is the total average rate per dimension. Assuming K 

to be a positive integer, then the pyramid S(Lp,K) possesses 

many cubic lattice points (corresponding to codewords) on its 

surface. If we denote N(Lp,K) as the number of codewords on 

pyramid S(Lp,K), then K must be chosen as the largest integer 

such that: 

  2 p pR L

pN(L ,K) .                                    (5) 

For quantizing the coder-layer vector h2, we design the 

product PVQ, which possesses R*Lp bits, and among them, Rr 

bits are used for the scalar quantizer of r. The values of Rp and 

integer K can be calculated from (4) and (5), respectively. 

Then, the PVQ encoding algorithm for the Lp
 dimensional 

coder-layer vector h2 can be designed with a set value of Rr 

and calculated values of Rp and K. With the specified values of 

Rr, Rp and K, the PVQ encoding algorithm for the coder-layer 

vector h2 is given as: 

Step 1: Quantize r  via a Max quantizer with 2Rr outputs levels 

and get the quantizer output r̂ .  

Step 2: For each coder-layer vector 2h , choose the nearest 

2
ˆ( , ).pS L rh  

Step 3: Scale 
2h  by 

2 1/ || ||K h  such that the resulting vector 

v̂  is on ( , )pS L K . 

Step 4: Find the integer point codeword ˆ ( , )S L Kv , nearest 

to v̂ . This can be performed as follows: 

(a) Round each element of v̂  to the nearest integer to obtain 

the resulting vector v̂ . 

(b) Calculate 1
ˆ|| ||v . If 1

ˆ|| || Kv , then go to step 5. If 

1
ˆ|| || Kv , then decrease by one in magnitude the 1

ˆ(|| || )Kv  

nonzero elements of v̂  that contribute the largest error and 

were previously rounded up. If 1
ˆ|| || Kv , then increase by 

one in magnitude the 1
ˆ( || || )K v  elements of v̂  that 

contributes the largest error and were previously rounded 

down. 

Step 5: Scale v̂  by 
2 1|| || /Kh  to produce the PVQ output 

vector 
2ĥ . The product PVQ output is 

2 2
ˆ ˆr̂h h . 

Different Rr values are applied for experiment and the 

optimal Rr which produces the best quantization performance 

is used in the final PVQ.  

3. Experiments and results 

3.1. Experiment setup 

Experiments are conducted using the TIMIT database [18] and 

all of the 4200 speech utterances are down sampled to 8 kHz. 

A total of 3800 sentences are selected for training and the 

remaining 400 sentences are used for testing. This results in a 

connection of 196.29 minutes training speech and 20.41 

minutes testing speech. The 10th order LSF vectors are 

calculated for every 10 ms frame with a 30 ms Hamming 

window. For pre-training each RBM, all training vectors are 

subdivided to mini-batches [8, 15], with each containing 100 

training vectors; the weights are updated after each mini-batch. 

The RBMs are pre-trained with 50 epochs and the learning 

rate is 0.001. A momentum of 0.9 and a small weight-cost of 

0.0002 are utilized during the pre-training. For fine-tuning, a 

conjugate gradient method with 200 epochs is employed [8]. 

The input and output features are normalized to zero mean and 

unit variance, and a reverse step is processed on the output. 

3.2. Results and discussions  

3.2.1. Modelling accuracy comparison  

Performance comparisons are first made between the 

modelling error of the DCM and DAE. In the DCM, N 

consecutive LSF vectors are compressed into a reduced LSF 

set with P+1 vectors, where P is a positive integer defining the 

order of the model [2]. We train the DAE networks with the 

coder-layer vector dimension, identical to the DCM 

compressed vector dimension, that is, Lp=(P+1)×10. The 

quantity of the first and third hidden nodes is 100. To measure 

the performance of the reconstructed LSF parameters, we 

employ the spectral distance (SD) [1], which is defined as 

follows: 

2

10 10

1 ˆ10log ( ) 10log ( ) , ,
2

π

π
SD P ω P ω dω dB

π
    (6) 

where ( )P ω  and ˆ( )P ω  are the LPC power spectra of the 

original and quantized LSF vectors, respectively. 

Table 1 presents the modelling error performance of the 

DCM and DAE for 5 consecutive LSF vectors, as a function 

of the compressed vector dimension. The results show that the 

DAE possesses better modelling accuracy than the DCM when 

their compressed vectors has the same dimensions.  

Table 1: Modelling error comparison of DCM and DAE for 

five consecutive LSF vectors. 

Compressed 

vector dimension 

Avg. SD (dB)  2-4 dB outliers (%) 

DCM DAE  DCM DAE 

20 0.90 0.79  7.81  1.59 

30 0.67 0.53  3.47 0.13 

40 0.63 0.48  2.5 0.06 

 

The proposed long-term quantizer, which combines the 

DAE and PVQ, is referred to as the DAE-PVQ, and the 

combination of the DCM and MSVQ in [2] is denoted as the 

DCM-MSVQ. The overall quantization performance of the 

DCM-MSVQ and DAE-PVQ is evaluated. Considering a 

constrained coding delay in telephony applications, we 

concatenate 3 consecutive frames for the experiment, i.e., N is 

set to 3. For the DCM, the only choice for P is 1 for 3 LSF 

frames, meaning that the dimension of the reduced LSF set is 

20 (= (P+1)×10). The DCM-based compression possesses the 

constraint that the dimensions of the reduced set needs to be a 

multiple of the LSF vector, but the DAE-based compression 

possesses an advantage in that the coder-layer dimensions 

could be any value.  

3.2.2. Rate-distortion performance comparison 

We train several DAE networks with the coder-layer vector 

dimension Lp varying from 14 to 20 in increments of 2. The 

PVQ totally uses R*Lp bits to quantize the coder-layer vector, 
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and the corresponding bit rate for LSF quantization is RLp/N 

bits per frame. For a specific bit rate and coder-layer 

dimension, we need to determine the optimal Rr, producing the 

best quantization performance for the PVQ. Figure 3 presents 

the SNR values of PVQ quantized coder-layer vectors as a 

function of Rr. The selected optimal Rr values are used in the 

final PVQ to evaluate the LSF quantization performance.  
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Figure 3: SNR values of the Lp-dimensional PVQ for different 

bit rates of Rr. 

Figure 4 presents a rate-distortion performance comparison 

between the DCM-MSVQ and DAE-PVQ. The average SD 

curves of DAE-PVQ are situated on the left of the DCM-

MSVQ. Thus, DAE-PVQ yields a performance gain with 

regard to both the average SD and 2-4 dB outliers, compared 

to DCM-MSVQ at the same bit rate. For small values of Lp, 

large performance gains at low bit rates benefit from the 

coder-layer dimension of DAE being allowed to take any 

value. For increased values of Lp, large performance gains are 

achieved at high bit rates due to the improved modelling 

accuracy of DAE. Figure 4 also illustrates the trade-off 

between modelling accuracy of the DAE and the quantization 

accuracy of PVQ. This trade-off is influenced by the coder-

layer dimension; a proper coder-layer dimension producing 

the best performance can be selected depending on the actual 

bit rate. 

(a) Average SD (b) 2-4 dB outliers

Figure 4: Rate-distortion performance comparison between 

DCM-MSVQ and DAE-PVQ. 

3.2.3. Implement into ultra-low bit rate speech coders 

For the MELPe coder at 1200 bps mode, the three consecutive 

LSF frames are quantized using MSVQ. The DCM-MSVQ 

and proposed DAE-PVQ algorithm are implemented to the 

MELPe standard codec at 1200 bps mode, in which six 

unvoiced (U) or voiced (V) frame combinations or voicing 

classes are considered. For each voicing class, the DCM-

MSVQ and the DAE-PVQ algorithms are designed at the 

same LSF parameters encoding rate as the standard codec. 

Table 2 shows the average SD performance of MSVQ, DCM-

MSVQ and DAE-PVQ with fixed coder-layer dimensions 

(Lp=20) and evaluated optimal coder-layer dimensions. As 

shown in Table 2, DAE-PVQ with the optimal coder-layer 

dimensions produces better SD performance than that of the 

DCM-MSVQ, since the DAE-PVQ method can determine the 

optimal coder-layer dimension based on the actual encoding 

rate. Comparing the MSVQ used in MELPe, the DAE-PVQ 

produces lower SD values in each voicing class, but the DCM-

MSVQ demonstrates worse performance for the VVU voicing 

class. Thus, the DAE-PVQ shows better robustness than the 

DCM-MSVQ across different speech segments or different 

voicing classes. 

Table 2: Average SD performance of DCM-MSVQ and DAE-

PVQ for each voicing class in MELPe coder at 1200 bps mode. 

Methods 
Voicing classes 

UUU 
(27bits) 

VUU 
(42bits) 

UVU 
(42bits) 

MELPe 

(MSVQ) 
3.15 2.64 2.51 

DCM-MSVQ 
(20 dimensions) 

2.31 2.33 2.30 

DAE-PVQ 

(Lp =20) 
2.78 2.07 2.08 

DAE-PVQ 

(optimal Lp) 

2.14  

(Lp =12) 

1.99  

(Lp =16) 

1.96  

(Lp =16) 

Methods 

Voicing classes 
UUV 

(42bits) 
VVU 

(39bits) 
Others 

(42bits) 
MELPe 
(MSVQ) 

2.65 2.74 2.65 

DCM-MSVQ 

(20 dimensions) 
2.41 2.99 2.51 

DAE-PVQ 

(Lp =20) 
2.10 2.50 2.52 

DAE-PVQ 

(optimal Lp) 

2.01  

(Lp =15) 

2.30  

(Lp =15) 

2.24 

(Lp =14) 

4. Conclusions 

The consecutive line spectral frequency (LSF) parameters, 

showing a high inter-frame and intra-frame correlation, are 

usually jointly quantized to reduce the encoding rate of the 

ultra-low bit rate speech coders. This paper presents a multi-

frame quantization of LSF parameters using a deep 

autoencoder (DAE) and pyramid vector quantizer (PVQ). To 

compress and de-correlate multiple LSF frames, we apply a 

deep autoencoder whose coder-layer units are linear with 

Gaussian noise. To quantize the coder-layer vector, we apply 

PVQ. The experiment results show that the proposed DAE-

PVQ algorithm with determined optimal coder-layer 

dimension outperforms the DCM-MSVQ method in terms of 

spectral distortion (SD) performance and robustness across 

different speech segments.  
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