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Abstract
Exact analysis of the glottal vibration patten is vital for as-
sessing voice pathologies. One of the primary steps in this
analysis is automatic glottis segmentation, which, in turn, has
two main parts, namely, glottis localization and the glottis seg-
mentation. In this paper, we propose a deep neural network
(DNN) based automatic glottis localization and segmentation
scheme. We pose the problem as a classification problem where
colors of each pixel and its neighborhood is classified as be-
longing to inside or outside the glottis region. We further pro-
cess the classification result to get the biggest cluster, which is
declared as the segmented glottis. The proposed algorithm is
evaluated on a dataset comprising of stroboscopic videos from
18 subjects where the glottis region is marked by the three
Speech Language Pathologists (SLPs). On average, the pro-
posed DNN based segmentation scheme achieves a localization
performance of 65.33% and segmentation DICE score of 0.74
(absolute), which is better than the baseline scheme by 22.66%
and 0.09 respectively. We also find that the DICE score ob-
tained by the DNN based segmentation scheme correlates well
with the average DICE score computed between annotation pro-
vided by any two SLPs suggesting the robustness of the pro-
posed glottis segmentation scheme.
Index Terms: Glottal segmentation, DNN, stroboscope.

1. Introduction
In human speech production, vocal folds, through its quasi-
periodic vibration, play a critical role in modulating airflow
from lungs [1]. Glottis is the area between the vocal fold which
allows the air to pass. Changes in the muscle properties or over-
all geometric shape of the vocal folds can cause voice alteration
like hoarseness and dysphonia [2]. There is a particular class of
vocal fold condition called Sulcus vocalis (SV), where a groove
is formed in the vocal fold which extends from epithelium till
the vocalis muscle of the vocal folds. Based on the cadaver stud-
ies, its prevalence rate has been reported to vary from 0% to 9%
[4]. The groove in SV leads to reduced mass of the vocal folds
and an incomplete glottic closure during voice production (glot-
tic chink). The laryngeal functioning and classification of the
severity of the glottic chink in SV is primarily done by the clin-
ical experts through visual inspection of endoscopic video. This
makes it difficult for the speech language pathologist (SLP) to
consistently classify glottic chink and to document the change
across the phases of interventions.

Apart from expensive high-speed camera to capture fast
rate of vibration (70-500Hz), the standard clinical routine for
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Figure 1: Example images from all 18-subjects show the inter
subject variability in terms of glottal shape, lighting, and cam-
era position.
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Figure 2: Image frames (with associated frame numbers) from a
video where the glottis is blocked by the supraglottic structures.

such visualization has been stroboscopy over last decades and is
likely to remain the gold standard for the next 10 to 20 years [3].
While there is no doubt among clinicians that stroboscopy is an
essential part of medical voice assessment, the clinical parame-
ters obtained from stroboscopy are highly subjective and often
show little inter-rater reliability. There are several problems in-
herent to the technique itself: 1) some images can be incorrectly
illuminated 2) images may not be taken at the right instant 3)
rotation of the camera that causes the glottis to appear in differ-
ent orientation posing challenges to segmentation. Stroboscopy
video images (corresponding to different subjects) used in this
work are illustrated in Fig. 1. It is clear from the figure that
there is high variability among the glottal shapes of different
subjects. In some cases, the illumination is really poor (e.g.,
s8, s9). From the figure, it is also clear that the camera position
relative to glottis changes across subjects. We also observe in
the data that the glottis often gets occluded by the supraglottic
structures while stroboscopic recording during sustained phona-
tion, thus posing a challenge to automatic glottis localization
and segmentation algorithm as shown in Fig. 2.

The first step in a stroboscopic video based automatic voice
assessment is the segmentation of the glottis region. The shape
and the vibration pattern of the glottal region can be used to in-
fer the modification in the muscle properties and the vocal fold
geometry. There are only few algorithms in the literature de-
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Histogram of DICE score across SLPs
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Figure 3: Histogram of average DICE score [13] between the
pair of SLP annotations and three example images and corre-
sponding annotations by the three SLPs to show the degree of
inter SLP agreement.

signed for fully automatic segmentation [2, 4–12]. Only some
of them are designed for the stroboscopic videos [2,5,7]. An au-
tomatic glottic segmentation followed by quantifying the area of
glottis could facilitate the SLP in the classification of the sever-
ity of the glottic chink in an objective manner. For example,
Gloger et al. have used prior shape knowledge using Fourier
descriptor from a large amount of different glottal shapes to lo-
calize the glottis and the glottal shape is tracked from one im-
age to the next using levelset segmentation and Probability Im-
age Generation [2]. Cerrolaza et al. have used region growing
with the thresholding to localize the glottis and the active shape
model (ASM) to find the glottis boundary [5]. But the ASM
could fail when the glottal shape during testing is much differ-
ent from those in training. Osma et al. have used watershed
transform with just noticeable difference criteria to localize the
glottis [7]. Latter methods were found to be sensitive to the
threshold selection.

In this paper, we focus on the segmentation of the glottis
using its color structure and its neighboring color pattern. We
hypothesize that the problem can be posed as a classification
problem and the glottal region color and its neighborhood has
a pattern different from that outside the glottal region. We use
a 3×3 neighborhood around a pixel and its color in RGB to
form the feature vector. We train a DNN to classify whether
each pixel belongs to the glottal region or not. We evaluate the
algorithm on stroboscopic videos from 18 subjects, where the
glottis regions are marked by three SLPs. We use a 4-fold cross
validation setup. We train the DNN with the first SLP annota-
tion and evaluate on all three SLP annotations. The results show
that the localization accuracies are 60%, 73.1% and 63.2% for
three SLP annotations. The segmentation DICE scores [13] on
the correctly localized images are 0.69, 0.62 and 0.66 for the
three SLP annotations. We show that the proposed method is
better than the region growing initialization used in [5] both in
terms of the localization accuracy and the DICE score. We also
find that the proposed method performs well on the images with
high agreement among the SLPs.

2. Dataset
All the stroboscopic videos, used in this work, were recorded
as a part of the evaluations that were performed by an Otorhi-
nolaryngologist using Xion Endostrob E from Xion with 70 de-

gree rigid scope. The Digital Video Archive Software (DiVAS)
version 2.5 from XION Medical was used for the video record-
ing purposes. The LED light source from the hardware XION
Xenon R-180 was utilized for illumination.

For stroboscopic recording, each participant was asked to
relax and sit on a metallic stool facing the examiner. The Xy-
locaine solution was sprayed to the participant’s oropharyngeal
region to eliminate gag reflex. He/she was instructed to protrude
the tongue out and to phonate vowel /i/ (as in word ‘heed’) for
4-5 seconds whenever indicated verbally. The participant was
instructed to repeat the phonations until the Otolaryngologist
could obtain an appropriate view of the laryngeal structures.
The inbuilt recording option was used for recording the laryn-
geal structures initially at rest, followed by recording over the
inhalation and phonation tasks.

Stroboscopic videos from 18 patients (one video per pa-
tient having multiple phonations)(12 males and 6 females) with
SV are considered in this work. They are denoted by Si, i =
1, ..., 18. Sample glottis images from stroboscopic video for
each of these patients are shown in Fig. 1. The average age of
a patient is 30.72 years. Each video is converted to avi format
with resolution of 720× 576 and 25 frames per second. A video
in this corpus has a minimum of 3 and a maximum of 15 phona-
tions. Each video was chosen to ensure that it contains audible
recording events with adequate view of the laryngeal inlet and
glottis. Subjects considered in this work were reported to have
no associated mass occupying vocal fold lesions, neurological
conditions, or any other speech language disorders. The dura-
tion of a video varies from a minimum of 11s to a maximum of
84s with an average duration of 44(± 20) seconds. A subset of
921 randomly selected image frames from all 18 videos are for
experiments in this work.

A MATLAB based graphical user interface is created to an-
notate the images, using which the SLPs mark the boundary
of the glottis region. Three SLPs (a1, a2, a3) annotated each
of 921 images. Second row to the last row of Fig. 3 illus-
trates three images for which annotations performed by three
SLPs. In last three rows the image is zoomed near the glottis to
clearly show the boundary depiction. We observe that the an-
notations often vary across SLPs, particularly when the glottal
opening is small as shown in the third column of Fig. 3. Sim-
ilarly, poor inter-SLP agreement has been observed when the
illumination is poor, e.g., S8, S15 and S6 as shown in Fig. 1.
In order to quantify the agreement of the glottis boundary an-
notation across SLPs, DICE score [13] is used. We compute
the DICE score among each pair of annotations for every im-
age. Mean DICE score is computed by taking average across
all pairs. Mean DICE score for three illustrative examples in
Fig. 3 are given at end of respective columns. It is clear that
the DICE score is low for images with small glottal opening. A
histogram of mean DICE score for 921 images is shown in the
first row of Fig. 3. It is clear from the figure that the majority of
the images the DICE score is greater than 0.8, although there is
disagreement between the SLPs for few images.

3. DNN based glottis localization and
segmentation

The proposed DNN based method consists of two main steps
as shown in the Fig. 4 ( red box). In the first step, we classify
each pixel in the image to predict whether it belongs to inside
or outside glottis region. In the second step, we cluster the pix-
els which are classified as inside glottis regions and filter them
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Figure 4: block diagram of the proposed approach.
based on eccentricity and its orientation to find the final glottis
segment. Each of these steps is explained in detail below.

3.1. DNN based pixel classification

We pose the problem of glottis segmentation given an endo-
scopic RGB color image (I) of size M × N × 3 as a classifi-
cation problem, where each pixel of the image is classified as
belonging to inside or outside the glottis region (pixel label).
We consider w neighborhood around a pixel to construct a fea-
ture of length (3(2w + 1)2). We use this feature as input to the
DNN with L layers and the output is a pixel label. Given an
input vector x at the first layer of DNN, we obtain the predicted
pixel label yL at the output layer. The output of the l-th hidden
layer yl, given the weight matrix Wl and hidden bias bl is given
by yl(x) = φ(Wlyl−1(x) + bl), l = 2, . . . , L − 1. where, φ
is the activation function. We define d to be the desired pixel
label for training the DNN. We define the objective function to
be minimized as the binary cross entropy error between the d
and predicted label yL. The weights of the DNN are learnt us-
ing the back-propagation algorithm. The weights are updated
using ADAM [14]. DNN is implemented by using keras [15]
and theano [16] libraries. Given the predicted labels (yL) for
each pixel, we construct a binary image B with pixel value of
‘1’ for those which are predicted as inside the glottis regions.

3.2. Post processing

The previous step independently classify whether the pixel is
inside or outside the glottis region. There is no constraint that
the pixels with label ‘1’ should form a single region. Hence, we
propose post processing step on the binary image B to get the
final segmented glottis region.

Given the binary image, where we scan the image column
wise and assign the cluster number to the pixel with label ‘1’.
The pixel is assigned to a cluster number based on its majority
of the neighbor’s cluster numbers. If none of the neighbours
of the pixel are assigned to a cluster, we assign a new cluster
number to the pixel. This method is also called as run length
implementation of the local table method [17]. Given the clus-
tered pixels, we measure the area, eccentricity and the orienta-
tions of each of the cluster [17]. It can be observed from Fig.
1 that the glottis shape is similar to an ellipse and the orien-
tation of the major axis is greater than 35o with respect to the
horizontal line. Hence, we retain the clusters which have ec-
centricity greater than 0.2 and orientation greater than 35o. The
region with the highest area is declared as the segmented glottis
region. The proposed method is indicated by DNNS .

4. Experiments and results
4.1. Experimental Setup

We divide the entire data into four folds, namely, fold1:
(S1, S2, S3, S4), fold2 :(S5, S6, S7, S8, S9), fold3:

(S10, S11, S12, S13, S14), fold4: (S15, S16, S17, S18).
The subjects in each fold are selected such that the number of
images in each fold is approximately the same. We use three
folds for training and one fold for testing in a round robin
fashion. Frames corresponding to one subject from the training
data is used as a validation set. The RGB values of a 3x3
neighborhood centered at each pixel is considered, resulting
in a 27-dimensional feature vector with respect to the center
pixel. We use the annotations from a1 for DNN training. The
label of ‘1’ is assigned to pixels which belong to inside glottis
region and ’0’ label for rest of the pixels. The number of pixels
with ’0’ labels is more than that with label ‘1’ as the number
of pixels within the glottis region is less than that outside the
glottis region. Hence, the pixels with label ’0’ are randomly
subsampled to have equal number of feature vectors for both
classes. Each feature in the feature vector is made zero mean
and unit standard deviation prior to training.

For DNN, we have chosen a configuration with 3-hidden
layers with 128 units in each layer. The relu function is used
as the activation function for all layers. 27-dim feature vector
is given as the input to the first layer. The output layer is a
sigmoid layer with 1-dimension. The parameters for ADAM are
chosen as follows: learning rate=0.001, β1 = 0.9, β2 = 0.999,
ε = 10−8 and batch size of 32. DNN weights are learnt and
validation loss is monitored to stop the training process.

4.2. Baseline scheme

As a baseline scheme, we use the method by Cerrolaza et al.,
which uses region growing with the thresholding (BL). We
found that using ASM with the region growing makes the per-
formance poor. Similarly, the scheme by Gloger et al. [2] does
not work well and, hence, not used as a baseline, as the 921
images chosen for annotation did not cover all types of glottal
shapes which is critical for it to work well. We combine the
proposed method with the baseline by considering the pixels
which are classified as belonging to the glottal region by both
the proposed DNN based method and the baseline scheme. This
is indicated by BL+DNNS .

4.3. Evaluation

We use two evaluation metrics. The first one measures the lo-
calization accuracy and the second one measures the accuracy
of the segmentation. We evaluate the performance of the algo-
rithms using annotations by all three SLPs.

Localization accuracy L(%): We evaluate the localization
accuracy by the percentage of the test images where the cen-
troid of the predicted glottal region falls within the ground truth
glottis contour.

Dice Score (D): To evaluate the segmentation quality of
the methods, the DICE score [13] is used, which has been es-
tablished as a reliable segmentation quality measure for medical
images [18]. The DICE score is computed based on the equa-
tion: D = 2×N(MT∩MS)

N(MT )+N(MS)
, where MT and MS represent man-

ually annotated and automatically predicted glottal regions, re-
spectively, and N() stands for the number of pixels in a region.
Thus, higher the DICE score, better is the glottis segmentation.

4.4. Results and Discussion

Table 1 shows the fold-wise localization accuracy using three
methods (BL, BL+DNNS and DNNS) as well as accuracy
averaged across folds when annotation from each of three SLP
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Table 2: DICE score for the frame for which the (a) only DNNS localization is correct. (b) only BL localization is correct. (c) both
BL and DNNS localization is correct.1

(a) DNNS only (b) BL only (c) DNNS +BL

BL DNNS +BL DNNS BL DNNS +BL DNNS BL DNNS +BL DNNS

fold1 0.79,0.52,0.79 0.78,0.63,0.83 0.76,0.76,0.81 0.61,0.76,0.62 0.70,0.79,0.79 0.90,0.79,0.98 0.80,0.73,0.79 0.83,0.72,0.83 0.81,0.72,0.81
fold2 0.63,0.09,0.66 0.72,0.16,0.70 0.67,0.69,0.64 0.05,0.59,0.05 0.09,0.69,0.10 0.38,0.69,0.40 0.63,0.59,0.66 0.72,0.69,0.70 0.67,0.69,0.64
fold3 0.58,0.10,0.56 0.65,0.22,0.56 0.62,0.63,0.52 0.08,0.60,0.07 0.24,0.68,0.26 0.72,0.69,0.73 0.64,0.59,0.62 0.69,0.67,0.62 0.68,0.68,0.59
fold4 0.74,0.60,0.72 0.62,0.61,0.60 0.56,0.66,0.55 0.42,0.81,0.41 0.36,0.81,0.35 0.40,0.76,0.41 0.85,0.70,0.81 0.85,0.57,0.81 0.80,0.53,0.76

average 0.69,0.33,0.68 0.69,0.41,0.67 0.66,0.69,0.63 0.29,0.69,0.29 0.35,0.74,0.37 0.60,0.73,0.63 0.73,0.65,0.72 0.77,0.66,0.74 0.74,0.66,0.70

Table 1: Localization accuracy (%) of the proposed algorithm,
baseline and the combination of both.1

L(%) BL DNNS +BL DNNS

fold1 61.0,76.0,62.0 70.4,79.1,79.1 89.9,78.7,98.5
fold2 5.4, 59.4, 5.0 9.0,69.0, 9.6 38.0,69.0,40.0
fold3 8.2,60.4, 7.5 23.9,67.7,26.0 72.2,68.6,72.8
fold4 42.1,81.0,41.4 35.5,81.3,35.4 39.9,76.2,41.4

average 29.1,69.2,29.0 34.7,74.3,37.5 60.0,73.1,63.2

is used separately for evaluation. It is clear from the table that
the DNNS performs better than the baseline. The accuracy
for fold2 using the baseline and proposed method is poor. It
could be because of the poor illumination in the subjects S5,
S6, S8, S9 in fold2 as shown in Fig. 1. The glottis is clearly
visible in the images for all subjects in fold1. This results in a
significantly better localization accuracy in fold1 by theDNNS

over the baseline method.
Table 2(a) shows the DICE score for all folds computed us-

ing frames in which glottis is correctly localized by theDNNS .
As expected theDNNS is performs significantly better than the
baseline in these frames. Table 2(b) shows the DICE score for
the all folds computed using frames in which glottis is correctly
localized by the BL. It can be observed that the DICE scores
using DNNS does not drop significantly in frames where BL
based localization is accurate. This is mostly due to the fact
that DNNS based localization is accurate on frames where BL
accurately localizes the glottis but not vice-versa. This indi-
cates that the DNNS is performs as good as BL in all images.
Table 2(c) shows the DICE score for all folds computed using
frames in which the glottis is correctly localized by both BL
and DNNS ( ∼26%, ∼25%, ∼21% of frames for three SLPs
respectively). In this case combining both methods performs
better. The Fig. 5 compares glottis segmentation results using
DNNS , BL and DNNS + BL on three example images. It
can be observed from the figure that the BL scheme results in
wrong segmentation in the first image due to dark region around
the glottis while that does not happen for the proposed DNNS .
In the second image, there is considerable amount of reflec-
tion from the trachea tube; as a result, BL could not localize
any glottal region. Since there is a disagreement among the
SLP annotations for some images, we investigate the relation
between the DNNS segmentation and the degree of disagree-
ment across SLP annotations. Fig. 6 shows the DICE score av-
eraged across all three pairs of SLP annotations vs DICE score
using DNNS averaged across three SLPs annotations. For this
plot, we consider the frames, where the DNNS localization is
correct. It can be observed from the figure that DNNS based
segmentation performs poorly in frames where there is more
disagreement across SLP annotations results in a correlation of
0.39.

1The highest average L(%) (or DICE score) among three SLPs an-
notations are marked in italics and the highest average L(%) (or DICE
score) is marked in bold. Three numbers in each cell indicates the L(%)
(or DICE score) with respect to each SLP annotation.

(a) (b) (c) (d)

Figure 5: Column (a): Three example images with annotation.
Column (b): corresponding segmentation by DNNS . Column
(c): corresponding segmentation by BL. Column (d):: corre-
sponding segmentation by BL+DNNS .
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Figure 6: DICE score averaged across all three pairs of SLP an-
notations vs the DICE SCORE using DNNS averaged across
three SLPs annotations.

5. Conclusion
We propose a deep neural network based automatic glottis local-
ization and segmentation scheme. We pose this as a classifica-
tion problem where colors of each pixel and its neighborhood is
classified as belonging to inside or outside the glottis region. We
further process the classification result to get the biggest cluster
as final segmented glottis. We evaluate the proposed scheme
on a dataset comprising stroboscopic videos from 18 subjects,
where the glottis region is marked by the three SLPs. On aver-
age, the proposed DNNS scheme achieves a localization per-
formance of 65.33% and segmentation DICE score of 0.74 (ab-
solute), which is better than the baseline scheme by 22.66% and
0.09 respectively. We also find that the DICE score obtained by
the DNN based segmentation scheme is not different from the
average DICE score computed between segmentation provided
by any two SLPs suggesting the robustness of the proposed glot-
tis segmentation scheme. As a part of future work, we want use
better way of clustering the DNN output, fine-tuning the pre-
dicted contours using Active Contour methods and end to end
segmentation based on the DNN. Quantifying the area under
glottis for diagnostic as well to use as an outcome measure and
application of similar localization methods for identifying the
density of redness/inflammation in conditions such as Gastroe-
sophagea reflux disorder.
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J. M. Gutiérrez-Arriola, J. I. Godino-Llorente, and R. Cabeza,
“Fully-automatic glottis segmentation with active shape models.”
in MAVEBA, 2011, pp. 35–38.

[6] S.-Z. Karakozoglou, N. Henrich, C. dAlessandro, and
Y. Stylianou, “Automatic glottal segmentation using local-
based active contours and application to glottovibrography,”
Speech Communication, vol. 54, no. 5, pp. 641–654, 2012.

[7] V. Osma-Ruiz, J. I. Godino-Llorente, N. Sáenz-Lechón, and
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