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Abstract
Using speech to interact with electronic devices and access

services is becoming increasingly common. Using such appli-
cations in our households poses new challenges for speech and
audio processing algorithms as these applications should per-
form robustly in a number of scenarios. Media devices are very
commonly present in such scenarios and can interfere with the
user-device communication by contributing to the noise or sim-
ply by being mistaken as user issued voice commands. Detect-
ing the presence of media sounds in the environment can help
avoid such issues. In this work we propose a method for this
task based on a parallel CNN-GRU-FC classifier architecture
which relies on multi-channel information to discriminate be-
tween media and live sources. Experiments performed using
378 hours of in-house audio recordings collected by volunteers
show an F1 score of 71% with a recall of 72% in detecting ac-
tive media sources. The use of information from multiple chan-
nels gave a relative improvement of 16% to the F1 score when
compared to using information from only a single channel.
Index Terms: audio classification, media sound detection,
acoustic scene analysis

1. Introduction
Analysis of acoustic scenes has been an active area of research
for a number of years. The need for this understanding has in-
creased significantly as a number of products allow us to use
speech in our household acoustic environments to control home
automation, entertainment systems and much more. Reliable
speech communication with these devices greatly enhances the
user-experience. It is very common for media sound activity,
such as a TV set playing, to be active for long durations of time.
Detecting the presence of the media device can help discrimi-
nate between user speech and media sounds and separate them
for better interaction with the user.

The task of detecting the presence of media sources
presents a new challenge to the field of analyzing acoustic en-
vironments. It overlaps with the concepts of Scene and Con-
tent Classification and Audio Event Detection (AED) however
it cannot be defined as either. The main goal is to determine
whether the received sounds have been reproduced by a me-
dia device present in the acoustic environment. The overlap
with the fields discussed above is still significant as types of
sound events and content type can be used as context to im-
prove the accuracy of detecting media presence. In the case
of simple acoustic scenes, such as speech, discriminating live
and media sources is a great challenge which hasn’t been di-
rectly addressed in the literature of the aforementioned fields.
To address this we aim to characterize the channel between the
emitted sound and the receiver.

In early work, scene analysis was broadly referring to the
task of understanding the acoustic environment. In [1] the au-
thor describes it as the steps taken by humans to solve the
“cocktail party” problem. Practical work to perform this was
shown in [2], inspired by the human auditory system to do that.
The concept has received significant research interest over the
years. Recently, through the DCASE challenge [3] many inter-
esting new approaches to the task of Scene Classification and
AED have been proposed. Early work on AED relied on simple
classification techniques [4] in order to categorize sound events
and audio inputs in general. With recent advancements in ma-
chine learning algorithms, more complex models are trained
for the tasks, using a larger amount of data. In [5, 6] Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) were combined for the task. Detection through
use of multi-channel information has shown promising results
in [7]. Multi-channel information was also used for the task of
Scene Classification in [8], with the audio further separated to
harmonic and percussive components. Long Short-Term Mem-
ory (LSTM) networks and CNNs were used in parallel for the
task in [9].

A growing issue with the development of new methods for
the task of Scene Classification and AED is the lack of large
scale databases with appropriate annotations. Many novel ap-
proaches have been previously proposed to address this. Learn-
ing through visual information and inferring only from audio
cues has been proposed in [10] and the generation of further
audio examples from available recordings has been proposed in
[11].

In this work, we formulate the task of detecting media pres-
ence in everyday household acoustic environments. Inspired by
the success of previously proposed methods for AED and Auto-
matic Speech Recognition (ASR) [7] we investigate the use of
multi-channel information for the task. Our motivation is that
information from multiple sensors will be useful in discriminat-
ing between non-stationary live sources and stationary media
sources in space. Spectral features are also used with the mo-
tivation that audio content can be inferred from spectral repre-
sentations which can reinforce the classification. The proposed
model is based on a parallel CNN-GRU-FC architecture [12],
with separate convolutional layers and different frame rates for
spectral inputs from a sensor-pair.

The rest of the paper is organized as follows: Section 2 for-
mulates the problem of media presence detection, describes the
features and the proposed model used for the task. Experimen-
tal results are presented in Section 3 and further discussed in
Section 4. A conclusion is given in Section 5.
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2. Method
2.1. Signal Model

For a microphone array with Q sensors, the received signal at
sensor q at sample with index n is denoted as xq(n). Assuming
J number of live sources andLmedia sources withK = L+J ,
producing signals sk, the following expression can be formed

xq(n) =
K∑

k=1

sk(n) ∗ hq,k(n) + θ(n), (1)

where hq,k(n) the Acoustic Impulse Response (AIR) of the sys-
tem from source k to sensor q [13] and θ(n) the additive noise
signal.

For live sources such as humans present in the room, the
signal sj(n) can be speech, with their contribution to the ob-
served signals being reverberant speech. For the case of media
sources however their contribution to the observed signals will
be more complex. Denoting the speech signal produced by the
media source as sl(n), this signal is not guaranteed to be ane-
choic. It will also be affected by the response of the media de-
vice. For L active media devices, the responses dl describe the
effect of the recording equipment and environment along with
the effect of the media device to the original signal played back
by the device. Temporarily assuming that the additive noise is
negligible, (1) can be rewritten as

xq(n) =
J∑

j=1

sj(n) ∗ hq,j(n) +
L∑

l=1

sk(n) ∗ hq,l(n) ∗ dl(n).

(2)
Spanning the above for n ∈ {0, . . . , N}, forms the vector

xq and subsequently the array X = [x1,x2, . . . ,xQ]. Columns
of the array correspond to different sensors. The objective of
this work is, given observation X to determine whether any me-
dia sources are active at any instance throughout the recording.
We wish therefore to design a model which performs the fol-
lowing task

g (X) =

{
1, if L ≥ 1

0, otherwise
(3)

2.2. Feature Extraction

There are two main discriminative aspects that we wish to ex-
ploit in this work. The signals sj and sk, relating to live and me-
dia sources respectively, are expected to have different charac-
teristics. Media sources are active for prolonged periods of time
and relate to complex and fast changing scenes. Live sources
on the other hand can have sparse activities and usually refer to
simpler acoustic scenes. Examples which illustrate these differ-
ences are music playback or the broadcast of an action movie
from a TV set versus a human present in a kitchen preparing a
meal. This first discriminative aspect between media and live
sources is expected to be present when observing the spectrum
of the received signals and their temporal progression.

The above example illustrates another important difference
between media and live sources. Although media sources are
complex with regards to their content, they are very predictable
in terms of their Direction of Arrival (DoA). Media sources
which are active for prolonged periods of time are expected to
be stationary in space. Humans on the other hand can be mo-
bile in space and also are free to speak in different directions,
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Figure 1: Split Long- Short-Term (SLST) Model Architecture

altering the DoA of sound to the sensors. This forms the second
discriminative aspect we wish to exploit by observing spatial
information extracted from the observed signal at the array.

Given the above discussion, we investigate the use of Log
Filterbank Energies (LFBE’s) as spectral features, which can be
extracted from a single or multiple channels independently. For
band b ∈ {1, . . . , B} defined by the filter response Fb(v) ∈
RN/2, this is defined as

Xq(b) = log

N/2∑

v=0

Fb(v)

[
N∑

n=0

xq(n)e
i2πvn
N

]2

. (4)

Using LFBE’s from a number of sensors can provide models
with information to infer spatial properties of the scene which
will help discriminate between media and live sources.

The time-domain cross-correlation between frames
recorded at different sensors is also considered as spatial
information and it is estimated as

cm1,m2(nc) =
N∑

n=0

xm1(n)xm2(n+ nc). (5)

The motivation is that cross-correlation values across different
sensor pairs will provide spatial information which will help
discriminate between media and live sources.

2.3. Media Sound Detection Model

The model we proposed for this task is based on a parallel CNN-
GRU-FC architecture. The model accepts two inputs extracted
from one sensor pair. The first input consists of LFBE’s vectors
extracted from the first sensor. The second input is derived from
the second sensor only, or a combination of the two sensors. We
investigate the use of LFBE’s and channel cross-correlations.
The model is named Split Long- Short-Term (SLST) for reasons
to be discussed in this section and it’s outlined in Figure 1.

The SLST model separates the two inputs directly into two
branches. The motivation of our work is shared to a wide ex-

1364



tent by the work done in [7] for AED, where spatial and mutli-
channel features along with spectral features were used. It is
proposed to use separate convolutional layers branches for each
feature set. The same approach is followed by the SLST model.
The convolutional layers extract useful representations of the
input and are followed by different max pooling layers in each
branch. The first branch which processes spectral information
from the first sensor performs pooling only in the frequency do-
main in order to reduce variations in frequency [12]; however,
for the multi-channel or spatial information, pooling is done
also in the time domain. Pooling in frequency is not suitable for
spatial inputs, therefore the size of pooling filter size along the
frequency axis is P=1. For for multichannel inputs we use P=3,
matching the frequency pooling applied in the first branch. With
the timescale reduced by 25 before the fully-connected (FC)
layer for the second branch, the fine time domain information is
lost and only the salient spectral-energy or spatial features are
retained, hence the name Split Long- Short-Term (SLST). This
approach was taken in order to guide the first branch to learn
the contents of inputs and the left branch to learn a compact and
spatially aware representation of the acoustic scene. A similar
concept is discussed in [14] but with the two branches sharing
the same input. The convolutional layers are followed by FC
layers which have a twofold purpose, to reduce the dimension-
ality of the activations [12] and allow for more effective use of
dropout which improves generalization [15]. Gated Recurrent
Unit (GRU) layers are used, with the first branch layer processes
25 frames per every 1 frame the second branch does. The di-
mensionality is then halved using a FC layer before the final FC
layer leads to the output neuron.

2.4. Model Training

The model is optimized using “Adam” [16] with cross-entropy
loss with early-stopping. When the validation loss does not de-
crease for 15 epochs, training stops and the model with the low-
est validation loss is kept.

Training data are split into train, validation and test sets
with ratios which consist of 85.0%, 7.5% and 7.5% of the data
respectively. Stratified partitioning is used for the splits with
regards to class labels. The training data are split into positive
and negative samples before training. At the beginning of each
epoch, the two sets are shuffled [17]. Batches of 128 samples
are generated during training which consist of 64 positive and
64 negative samples. This accounts for any imbalance in the
data and avoids class-wise weighting of losses.

2.5. Data Augmentation

As in the case of AED, the availability of annotated data for the
task is limited [11]. In our case, we wish for the available data
to be in a multi-channel format. This limits the data availabil-
ity even further. In order to acquire more data for training, we
employ a method which spatializes monaural recordings to an
arbitrary number of channels. The method relies on the avail-
ability of a number of monaural recordings which involve one
stationary source and a stationary array, which is used to beam-
form towards the direction of the source. We assume that the
received signal at this point is an estimate of the anechoic sig-
nal emitted by the source. Labeling the beamformed signal as
xbf (n), the augmented data samples forming X̃ are generated
using

x̃q(n) = xbf (n) ∗ h̃q(n), (6)

for q ∈ {1, . . . , 7}. The AIR h̃m(n) is generated using the
model described in [18]. The direct path sound Time Difference
of Arrival (TDoA) for the Q=7 receivers is contained based on
the array architecture. The rest of the reflections are placed at
random time intervals, with their amplitude scaled using Po-
lack’s model [13].

3. Experiments
The performance of the proposed model is evaluated using 311
hours of audio data collected from household acoustic environ-
ments of volunteers participating in a data collection program.
The 7-channel data was collected using Amazon Echo Dot de-
vices [19]. The recordings are segmented into 5 second utter-
ances which are individually labeled. The proportion of all ut-
terances for each label prior to the addition of the augmenta-
tion data is the following: Media 12.1%, Human 33.5%, Other
73.0% and Silence 15.9%. With the exception of silence, the
labels refer to sound sources. Labels are not exclusive and mul-
tiple source can be active in each utterance. An additional 67
hours of beamformed audio was augmented using the method
described in Section 2.5 and used for training. All the aug-
mented data samples are positive for media presence.

The model performance is compared against a baseline
model. The baseline model uses information from a single
channel and it is identical to the model described in Figure 1
however without the rightmost branch, which refers to the use
of multi-channel data. The comparison between this baseline
and the SLST model provides insight into the benefit of using
multi-channel information as proposed in this work.

The 64 LFBE’s are extracted between 0.1 and 7.2 kHz and
the filters Fb(v) have their geometric centers an equal distance
apart on the mel-scale. Extraction is done after the signal is
segmented into frames of 25 ms with a step of 10 ms. Cross-
correlations are extracted for the same frames using (5). One
sensor pair is used for the extraction and the cross-correlation is
estimated for frames corresponding to the same timestep. The
lag is varied between −3 and +3 samples, which gives 7 coef-
ficients per frame. All features are extracted from a maximally
spaced sensor pair on the ring of the Echo Dot device array.

Training both the SLST and baseline models using the
method described in Section 2.4 gives the results of Table 1.

Model g(·) F1 Precision Recall Accuracy
Baseline
1-LFBE 0.61 0.55 0.68 0.86

SLST LFBE +
xCorr (P=1) 0.67 0.63 0.71 0.89

SLST LFBE +
LFBE (P=3) 0.71 0.70 0.72 0.91

Table 1: Baseline and SLST Results for Media Detection

4. Discussion
Using spatial features provides a relative improvement of 10%
to the F1 score of the classification over the baseline which re-
lies only on monaural spectral features. Using the LFBE’s from
a second channel offered a relative improvement to the F1 of
16%. This result illustrates that using information from a mul-
tiple channels can lead to improvements in the detection of ac-
tive media sound sources. Spatial information in the form of
time-domain cross-correlations offers a significant benefit in the
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classification. Using spectral information from two channels of-
fers the best performance, and subsequent analysis we present
concentrates on this model. The statistical significance of the
improvement with respect to the baseline is evaluated using the
method described in [20]. We split the test population into 30
splits, from which the error rate [20] is evaluated. With a 99%
confidence interval the difference in performance between the
proposed model and the baseline is significant.

Media
Speech

Media
Singing

Media
Other

Baseline
Accuracy

SLST
Accuracy

0.85 0.85
0.62 0.75
0.67 0.92
0.97 1.00
0.68 0.76
0.90 0.97
1.00 1.00
1.00 1.00

Table 2: Baseline and SLST model accuracy for media types
with operating points set for EER. Summary of the accuracy in
detecting the presence of media sound sources in scenes which
contain the types indicated in the corresponding column per
row.

In Table 2, the accuracy of detecting specific types of media
sounds is listed. For these results, the operating point for each
network was set to provided an Equal Error Rate (EER). This
setting balances the false-accept rate and the false-reject rate.
The results summarize the accuracy of media utterances which
contain the types indicated by in the corresponding column
per row. The two rightmost columns compare the performance
of the baseline and proposed SLST model (using two channel
LFBE’s) for each category. From the results, we can deduce that
the proposed SLST model is more accurate for the majority of
cases. It performs better at both detecting and rejecting media
and non-media sources respectively. The most challenging task
appears to be the distinction between media and live speech.
Both models perform poorly for this subtask, with the SLST
model offering marginal improvements.

The content proves to be an important factor for distinction
of media and live sources. Samples containing music are reli-
ably classified; however, speech signals are a source of confu-
sion to the classifier. The multi-channel information improved
performance on speech samples. Increased mobility of live
sources makes multi-channel and spatial information more use-
ful. Limited bandwidth of speech signals makes their classifi-
cation more challenging as it provides less information about
dl(n) as given by equation (2).

5. Conclusion
A method for the detection of active media sound sources in
acoustic scenes has been proposed. The proposed method re-
lies on a CNN-GRU-FC model architecture, named Split Long-
Short-Term (SLST), and the use of multi-channel information.
The performance of the model is compared to a baseline model
which relies on a single-channel input. Experiment results on
dataset containing 378 hours of in-house audio recordings col-
lected by volunteers show that the proposed model outperforms
the baseline with an F1 score of 71%, a 16% relative improve-
ment. The proposed model performs better both at detecting
and rejecting media and non-media sources respectively.
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