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Abstract

We describe a new method for the automatic discrimination and
evaluation of phonation beginning with a consonant with soft
articulatory contact, which is used in the treatment of stutter-
ing, and normal phonation. Soft articulatory contact is trained
to relax articulators and remove hard contacts that occur during
stuttering. We use features related to the changes in acoustic
characteristics and the voice quality under the hypothesis that
the slowing down of articulatory movement of the initial con-
sonant and the relaxing of phonatory muscles co-occur with
soft articulatory contact. The results of an experimental eval-
uation showed that high accuracy was obtained when acoustic
features were related to the peaks of the first derivative of the
mel frequency cepstral coefficients (MFCCs) corresponded to
the slowing down of the movement of the articulators. The fea-
tures of vocal quality only slightly contributed to the classifica-
tion.

Index Terms: Articulation, speech treatment, stuttering

1. Introduction

Stuttering is a common speech disorder in the general popu-
lation with an incidence of 5% in children and 1% in adults
[1]. It is characterized by the core symptoms of the repetition
and prolongation of sounds and “blocks” (abnormal stoppages
of phonation, airflow and/or gestures of articulation). As stut-
tering becomes persistent, the duration of the blocks tends to
increase and their tension becomes stronger, sometimes accom-
panied by a tremor. People who stutter (PWS) have difficulty
in oral communication. Some of them, especially those who
choose to seek therapy, often have difficulties in social activi-
ties and negative attitudes toward communication [2]; 50% of
them meet the diagnostic criteria of social anxiety disorder [3].
The quality of life (QOL) of PWS in terms of the vitality, social
functioning, emotional functioning and mental health status has
been reported to be negatively affected by stuttering [4].
Fluency shaping is one of the most widely used treatment
methods for stuttering [1]. It changes the speech pattern to one
that can reduce stuttering. It includes soft voice onset for the
training of words beginning with a vowel and soft articulatory
contact for the training of words beginning with consonants.
Soft articulatory contact is used to mitigate stutterers’ too strong
contact between the lips or between the tongue and other articu-
lation organs in producing plosives and affricates (e. g., the con-
tact between the upper anterior teeth and the tip of the tongue
when producing the plosive /t/). The muscle tension caused by
blocks can be prevented by soft articulatory contact.
Computer-assisted fluency shaping therapies have been car-
ried out to facilitate self-practice in intensive training and

follow-up training after hospitalization, and the effect was
demonstrated in a large participant study [5]. Because the time
that a patient can receive face-to-face treatment by a clinician is
limited, repeated self-practice is crucial to enable the patient to
use the new speech pattern in everyday life. We previously pro-
posed a method for discriminating soft and hard voice onsets,
at the beginning of the initial vowel of words that used acoustic
parameters related to whether the glottis closes or opens before
the oscillation begins [6].

Soft articulatory contact has conventionally been evaluated
by measuring the onset of the vowel following the initial conso-
nant of words by either visually or using the amplitude contour
[7]1[8]. While the correlation between the perceived softness of
voice onset of vowels and the rise time (RT) for phonation is
reasonably high [9], the previous training system [7] uses the
RT for words which begins with both vowels and consonants.
Thus, a gradual increase in volume is scored highly, though too
long phonation is penalized.

There have been many studies on the automatic measure-
ment of characteristics of consonants, such as voice onset time
(VOT) [10]-[12], or the use of acoustic features of consonants to
detect or assess disordered speech [13]-[16]. Regarding stutter-
ing, methods for detecting repetition and/or prolongation have
been proposed [17]-[19]. However, methods for automatically
evaluating the consonant with soft articulatory contact itself
have not been developed.

In this study, we propose a method for the automatic dis-
crimination of soft and hard articulatory contacts with the aim of
developing a computer-based speech training system for stutter-
ing, specifically for modifying consonant production, that uses
acoustic features that do not depend on the RT. We focus on
the change in acoustic characteristics caused by reducing the
speed of articulatory motion. The first set of features relates to
the decrease in the speed of plosions and the slow transition of
the formants. The second set relates to the soft voice quality
resulting from reducing the tension of the muscles involved in
the adjustment of the vocal folds. Using these acoustic features,
it is expected that the patient can learn to eliminate excessively
abrupt articulatory motions, preventing the acquisition of an un-
natural phonation pattern that takes time too much to increase
the volume, without the need for special equipment such as the
electromyogram (EMG) used in a biofeedback method [20].

2. Conventional Acoustic Features

One of the computer-based scoring systems uses the average
magnitude profile (AMP), defined as the sum of the absolute
amplitude of speech signal samples within a windowed frame
[7]. The score of a given patient’s utterance is calculated on
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Table 1: Proposed acoustic features

Feature  Dimensions

9p 2

T 1
AM features dynr 13
dn, 13
Pm 1 3

H1-H2 1

VQ features H1-H3 1
CPP 1

the basis of the time until the AMP value increases to the up-
per threshold. It has been reported that the time until the AMP
value exceeds an upper threshold is up to 600 ms in an easy
onset of phonation [7]. The patient receives a score of 100% if
the difference between the therapist’s rise time and the patient’s
rise time is within 5 ms, and the score is reduced as the time
difference increases.

Whereas the rise time described above is used to score the
patient’s phonation, it was compared with the proposed features
in a simple discrimination task in this study. The RT feature is
defined as the time in which the root mean square (RMS) of the
sound signal increases from 10% to 90% of the maximum value
to simplify the calculation.

The RMS of the sound signal is calculated with a window
length of 20 ms and a sliding window step of 10 ms. Although
the maximum magnitude of the AMP and the duration of the
phonation were also used for scoring in [7], we do not use them
because our aim is to discriminate the phonation regardless of
the uttered word or sentence, in which case these parameters are
not well defined or useful.

3. Proposed Acoustic Features

As it is assumed that a plosion is smaller and/or slower when a
consonant is softly produced, the resultant formant transition
will be smaller and/or slower. Accordingly, we tested eight
acoustic features with a total of 45 dimensions shown in Ta-
ble 1. The features consist of articulatory motivated (AM) and
voice quality (VQ) subsets.

3.1. Articulatory Motivated Features

To capture the differences in the power and in the rate of change
of the vocal tract shape, we used features related to the dynamic
features of the mel frequency cepstral coefficients (AMFCCs).
Let the AMFCC vector at the kth frame be defined as

T

where n is the number of dimensions.

The n-dimensional vectors das and d,, have components
that respectively represent the maximum and minimum values
of the components of d™™ within the interval from the K ,th to
Kth frame at the beggining of the phonation. py is defined as
the vector of the maximum values of the squared components
of d!¥]. The ith components of dys, d., and pys are given by

dyi= max d", 2)
Ks<k<Ke
o : [K]
dm,i = D d;", 3
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respectively. The acoustic features g, and 7}, are defined as the
vector of the first two peak values of the sequence of the norm
of the AMFCC vector and the time interval between the two
peaks, respectively. When the squared norm of d is defined as

T
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gp and T}, are described by

T
gr = ("7, =117 (©)
Tp = (kp2 — kp1) s, Q)

where the sequence {||d*!||%; &k = 1,2,--- , K}, which is de-
fined as the “delta curve” g, has its first and second peaks at the
kpith and kpoth frames, respectively. The peaks are between the
Kth and K/th frames. A peak appears when the spectral char-
acteristics change. We extracted the first and second peaks to
capture the change in acoustic characteristics at the boundaries
before and after the first consonant. Because we observed that
adding A?MFCC features did not improve the performance in
a preliminary experiment, we omitted them in this experiment.

3.2. Voice Quality Features

Because the voice quality is assumed to become relaxed when
speaking with soft articulatory contact, we used three acous-
tic features related to voice quality: H1-H2, H1-H3 and cep-
stral peak prominent (CPP) [21]. The relative amplitude of the
fundamental frequency component to the upper harmonics in-
creases with the phonation with “relaxed” separation of the ary-
tenouds because the open quotient becomes longer [22]. This
difference in the acoustic characteristics can be quantified by
the difference in the amplitude of the first and second harmon-
ics (H1-H2) [22], of the first and third harmonics (H1-H3) or
the CPP.

H1-H2 and H1-H3 are features used to measure the slope
of the amplitude spectrum in the region relatively unaffected by
the formants. They are defined as the difference between the
amplitudes of the first harmonic and second or third harmonic
in the log domain. They are defined as follows:

HI-H2 = 20log,, a(2Fo) — 20log,, a(Fo) [dB],  (8)
H1-H3 = 20log,, a(3Fu) — 201log,, a(Fou) [dB], (9)

where a(f) is the amplitude spectrum of the waveform and Fy
is the fundamental frequency.

In a periodic signal, the peak of the cepstrum corresponds to
the fundamental frequency (Fp). The amplitude of the cepstral
peak has a larger value when the harmonic structure is promi-
nent because the amplitudes of the high-order harmonic com-
ponents are large. The CPP is defined by

CPP = max ¢(To) — acTo — b, (10)

where ¢(T0) is the value of the cepstrum at the quefrency of the
fundamental period Ty (= 1/Fp) s, and a. and b, are the slope
and intercept of the regression line of the cepstrum, respectively.

4. Experimental Evaluation
4.1. Speech Samples

Eleven male PWS and three speech therapists (STs) (two males,
one female), who were Japanese native speakers, uttered 36-56
Japanese words or single morae, beginning with a consonant,



with instructions to make the utterance with normal articulatory
contact (NAC) or soft articulatory contact (SAC). SAC was used
only at the first consonant, since stuttering occurs most often in
the beginning of a sentence or word [23][24].

The PWS were partly recruited from the patients of the hos-
pital of the National Rehabilitation Center for Persons with Dis-
abilities (NRCD) in Japan, and recruited from the Research In-
stitute of NRCD. This study has been approved by the ethics
board of NRCD. Five out of the eleven PWS received train-
ing in SAC by an ST. All PWS were instructed how to produce
phonation with SAC by an experimenter using the instruction
manual created by the STs in NRCD. All of the STs had at least
one year of clinical experience with stuttering.

Each word was uttered one to three times. The first conso-
nant of the word was /k/, /g/, /t/, /d/, Ip/ or /b/. The total number
of speech samples was 2400. Recording was conducted in a
sound-attenuated chamber using a headset microphone (AKG
C420) connected to a personal computer through a USB audio
interface (MOTU 828). The sampling rate and the number of
quantization bits were 48 kHz and 24, respectively. The audio
data were downsampled to 16 kHz, requantized to 16 bits and
analyzed.

4.2. Methods
4.2.1. Listening Evaluation

To label whether or not words were phonated with SAC, an ST
not included in the speakers evaluated the weakness of the ar-
ticulatory contact of the initial consonants (1 = ‘very strong’; 5
= ‘very weak’). The ST was asked to score 336 speech samples
on a five-point scale, which consisted of 12 utterances randomly
selected from each speaker’s utterances. Three samples uttered
by each speaker were presented twice at random to confirm the
consistency of the scoring; the ST listened a total of 420 sam-
ples. The speech samples were normalized by the mean RMS
value. The Pearson’s correlation coefficient between two evalu-
ations of the same voice was 0.81.

Figure 1 shows histograms of the scores of utterances by
the PWS group and ST group with intended SAC and NAC.
All STs utterances except for one had a score of four or five.
Thus, we assumed that the utterances scoring four or five could
be considered as SAC and the others could be considered as
NAC, and we labeled the utterances accordingly. We used the
mean score for the utterances that were presented twice. Table 2
presents the percentage of utterances with intended NAC and
SAC that were scored as 4 or 5. Note that repeated practice of
SAC is required to use it in daily life even if the patients can
produce utterances with SAC in a laboratory or training room
setting.

4.2.2. Feature Extraction

The speech signals were first normalized in amplitude and an-
alyzed frame by frame to obtain the MFCCs, H1-H2, H1-H3,
and CPP. Auditory Toolbox [25] for MATLAB was used to cal-
culate the 13-order MFCCs, using a 16 ms frame length and 10
ms frame shift. We used a 25 ms frame length and 10 ms frame
shift and applied a Hanning window for the calculation of the
other features.

K and K. were heuristically set to the frame numbers at
the utterance start time and 100 ms later, respectively. The ut-
terance start time was defined as the point when the RMS value
exceeds a threshold. K. and K. were the frame numbers 100
ms before the utterance start time and 200 ms after the utter-
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Figure 1: Histograms of (a) NAC and (b) SAC intended utter-
ances by STs and (c¢) NAC and (d) SAC intended utterances by

PWS.

Table 2: Percentage of the utterances with intended NAC and

SAC by PWS scored as 4 or 5 by the ST

Speaker Treatment NAC  SAC
S1 - 0.0 8.3
S2 - 0.0 25.0
S3 - 0.0 41.7
S4 - 8.3 75.0
S5 - 0.0 91.7
S6 - 0.0 100.0
S7 + 16.7 583
S8 + 8.3 75.0
S9 + 8.3 100.0
S10 + 0.0 100.0
S11 + 0.0 100.0

ance start time, respectively. A voiced-unvoiced decision was
made for each frame on the basis of whether the maximum
magnitude of the autocorrelation function exceeded a threshold.
These thresholds were determined experimentally.

The amplitudes of the first to third harmonics were obtained
by linearly interpolating between the neighboring data points of
the spectrum. To calculate the CPP, it was assumed in this study
that the fundamental frequencies were in the range of 50400
Hz, and we measured the cepstral peak between 2.5 and 20 s.
We used the average values of H1-H2, H1-H3 and CPP over the
voiced frames between the utterance start time and 200 ms later.

We also discriminated between SAC and NAC and es-
timated scores of weakness of articulatory contact by using
a support vector machine (SVM) and support vector regres-
sion. We used the kernlab [26] package implemented for the
statistical environment R. We used the Gaussian radial basis
kernel. The classifier was evaluated by leave-one-speaker-out
cross-validation. The classification and estimation were con-
ducted using the conventional feature (RT), the articulatory mo-
tivated features (subset AM), the voice quality features (sub-
set VQ), subsets AM and VQ (AM+VQ), and all features
(AM+VQ+RT).

The dimension of features used for classification and re-
gression were selected by a forward stepwise selection algo-
rithm. In this method, the set of features starts with an empty
basis and then the best feature is added “greedily” in each step.
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Figure 2: Waveforms, RMS and delta curve of (a) normal and
(b) soft contact utterance /gara:ki/ (“completely empty”).

We used the criterion of the highest accuracy.

5. Results and Discussion

Figure 2 shows examples of the waveforms, RMS and delta
curve of utterances with NAC and SAC. In the utterance with
SAC, the amplitude of the plosion of /g/ with SAC is weaker
than that with NAC. The first peak of delta curve for NAC is
larger than that for SAC. The magnitude of the delta curve for
NAC remains large during the transition from /g/ to /a/, while
the delta curve for SAC has two small peaks at the boundary
between the silence and /g/ and at the boundary between /g/ and
/al.

Table 3 presents the maximum accuracy rates of the clas-
sification and the classification and correlation coefficients be-
tween the score estimated by the regressor and the score rated by
the ST. Figure 3 show the accuracies of the classifiers trained by
the features selected by stepwise feature selection for the clas-
sification. The accuracy was maximum when the classifier was
trained with 13 selected dimensions. Even the accuracy of the
classifier trained by one proposed feature, which was selected in
the first step, was higher than that of the RT. Table 4 shows the
selected dimensions with the highest accuracy of the classifier
and the highest correlation coefficient of the regressor.

The accuracy did not decrease when the RT was removed
from the candidates in the dimension selection. The accuracy
was maximum when the classifier was trained by 13 selected
dimensions. This indicates that the proposed method can dis-
criminate SAC sufficiently well without using the slowness of
the increase in volume. The accuracy was only slightly im-
proved when subset VQ was added to subset AM. The accu-
racy was low with only subset VQ (66.1%). The results imply
that the soft vocal quality does not always co-occur with soft
articulatory contact.

The score estimated using subset AM was highly correlated
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Table 3: Accuracies of the classification and correlation coef-
ficients between the estimated and rated weakness scores (1)

when the best dimensions of features was selected.

Method Accuracy [%] r
RT 61.3 0.23
AM 88.0 0.71
vQ 66.1 0.18
AM+VQ 89.3 0.72
AM+VQ+RT 88.3 0.72
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Figure 3: Accuracy obtained by stepwise selection.

with the rated score (r = 0.71), whereas that estimated using
subset RT or VQ had a low correlation with the rated score. This
indicates that the features of subset AM may be the descriptors
of the weakness of the articulatory contact.

6. Conclusions and Future Work

In this study, we presented a new method for discriminating
soft and normal articulatory contact of the initial consonants
of words. By training a classifier using features related to the
changes in acoustic characteristics, better discrimination can be
obtained than when using the rise time of the amplitude. This
indicates that PWS would be able to use the evaluation system
for their training to correct or reduce their abrupt articulation
pattern, which could be an essential training tool for reducing
stuttering. In future, we will develop a speech training system
for a PC or mobile phone by utilizing the proposed acoustic
features in the present study.
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Table 4: Selected dimensions of the acoustic features

Selected dimensions

Pm,1 dar10 PMoa Gp,2 Gp,1 Amys darn

Classification
P13 da,3 CPP par7 dins dara
dnr1 Gp,2 dr2 A1 dna P13 HI-H2
Estimation dim,1 dar13 Py, PM,s G2 Parye A7
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