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Abstract

In this study, a multilingual phone recognition system for four
Indian languages - Kannada, Telugu, Bengali, and Odia - is de-
scribed. International phonetic alphabets are used to derive the
transcription. Multilingual Phone Recognition System (MPRS)
is developed using the state-of-the-art DNNs. The performance
of MPRS is improved using the Articulatory Features (AFs).
DNNs are used to predict the AFs for place, manner, round-
ness, frontness, and height AF groups. Further, the MPRS is
also developed using oracle AFs and their performance is com-
pared with that of predicted AFs. Oracle AFs are used to set the
best performance realizable by AFs predicted from MFCC fea-
tures by DNNSs. In addition to the AFs, we have also explored
the use of phone posteriors to further boost the performance of
MPRS. We show that oracle AFs by feature fusion with MFCCs
offer a remarkably low target of PER of 10.4%, which is 24.7%
absolute reduction compared to baseline MPRS with MFCCs
alone. The best performing system using predicted AFs has
shown 2.8% reduction in absolute PER (8% reduction in rela-
tive PER) compared to baseline MPRS.

Index Terms: Indian languages ASR, multilingual framework,
predicted AFs, feature fusion, deep learning

1. Introduction

There have been significant efforts in developing multilingual
speech recognizers, a detailed description of which is given
in [1] including issues, technologies and applications of mul-
tilingual speech recognition. Some of the notable work in this
direction are that of [2], which develops a multilingual phone
recognizer for spontaneous telephone speech for 4 languages
- French, British English, German, and Castillan Spanish, [3]
in which multilingual acoustic models are used to estimate the
acoustic models for a new language in a fast and efficient way,
and the design of a multilingual speech recognizer using Glob-
alPhone LVCSR dictation database is described [4].

A Multilingual Phone Recognition System (MPRS) is faced
with the specific difficulty of having to arrive at the appropriate
phone set based on which such a phonetic decoding can be done
on input speech from any of the languages of interest. Such a
common phone set has to have a coverage of all the phones
occurring across the multiple languages. Our aim here is to
develop a MPRS for 4 Indian languages and propose the use
of International Phonetic Alphabet (IPA) based common multi-
lingual phone-set which involves mapping acoustically similar
phonetic units across languages to an underlying IPA unit. This
is particularly appropriate considering that the IPA has strict
one-to-one correspondence between symbols and sounds which
makes it to be able to accommodate all the world’s diverse lan-
guages.

While noting that no other multilingual effort has examined
the use of IPA to derive a common phone-set labeling mech-
anism in the context of Indian languages, we also note that,
multilingual speech recognition work using Indian languages
has been limited to the following rather simplistic approaches
- a syllable-based multilingual speech recognizer for 3 Indian
languages Tamil, Telugu and Hindi [5], an isolated word recog-
nition system for 2 linguistically similar Indian languages Hindi
and Marathi [6] and, a bilingual phone recognizer for Tamil and
Hindi [7]. Our work, based on the IPA transcription, represents
an unifying framework generalizable to new languages easily.

The other main paradigmatic direction in multilingual
speech recognition is the use of Articulatory Features (AFs),
given that their production basis serves as a common feature
set across languages. The AFs can be continuous or discrete
(see for example [8]), with the Mermelstein model [9, 10, 11]
being a classic example of the continuous model. AFs have
been consistently shown to improve speech recognition perfor-
mance, such as in [12, 13, 14] (using continuous valued AFs)
and in [15, 16, 17] (for the discrete valued AFs). AFs repre-
sent a higher degree of invariance and hence it is more appro-
priate to use them in multilingual tasks. With respect to use
of AFs for multilingual speech recognition, the notable work
are those of [18] where it was shown that the speech recog-
nition performance can be improved by integrating the cross-
lingual and multilingual AFs, [19] which showed that the inter-
language variability can be compensated using AF detectors and
[20] which used a multilayer perceptron (MLP) based estima-
tion of multilingual AFs to improve the performance of multi-
lingual systems. With regard to estimation of the AFs, [21] and
[22] explored Deep Neural Networks (DNNs) as against the ear-
lier work on use of MLP and [22] used DNN derived AFs for
multilingual speech recognition. DNNs for multilingual speech
recognition are reported in [23, 24, 25, 26].

In this paper, we focus on building a MPRS which can iden-
tify the phonetic units present in a given speech utterance inde-
pendent of the language of the speech utterance. We also exam-
ine DNN based AF prediction from Mel-frequency cepstral co-
efficients (MFCCs), and use an early-fusion framework to aug-
ment the MFCC feature vector with various categories of AFs
to enhance the multilingual phone recognition performance. In
essence, this work focuses on how best to arrive at a feature
space (the AF parameter space) and the common phone set (the
IPA set) that ensures enhanced invariance of the phonetic units
amidst the increased variability due to the multilingual nature of
the MPRS problem. This is perhaps the first of its effort in the
context of Indian languages in several fronts, such as the use of
IPA based description of the common phone set for MPRS, the
use of DNN derived AFs as features with improved Phone Error
Rate (PER) and establishing very low PERs (~10%) for oracle
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AFss, thereby setting the baseline performance achievable if AFs
could be estimated accurately from speech directly or via other
spectral representations.

The rest of the paper is organized as follows: Section 2
describes our experimental setup. Detailed description of de-
velopment of MPRS, use of AFs, and the feature fusion is given
in section 4. Section 5 provides the summary of the paper.

2. Experimental Setup
2.1. Speech Corpora

The speech corpora of 4 Indian languages namely, Kannada
(KN), Telugu (TE), Bengali (BN) and Odia (OD) was col-
lected as a part of consortium project titled Prosodically guided
phonetic engine for searching speech databases in Indian lan-
guages supported by DIT, Govt. of India [27]. Speech corpora
contains 16 bit, 16 KHz speech wave files along-with their IPA
transcription [28]. The wave files contain read speech sentences
of size between 3 to 10 seconds. Detailed description of the
speech corpora is provided in [29, 30, 31, 32]. We have used a
split of 80 : 20 for train and test data, respectively. 10% of train-
ing data is held out from the training and used as development
set. Table 1 shows the statistics of the speech corpora.

L # Speakers Duration (in hours)
euee M F Train Dev Test Total
Kannada 7 9 2.80 0.33 | 0.76 3.89
Telugu 9 10 4.05 0.47 1.07 5.59
Bengali 20 30 3.42 0.40 | 0.99 4.81
Odia 14 16 3.58 0.36 | 0.97 491
[ Total [50 T 65 [ 1385 ] 1.56 | 379 [ 19.20 |

Table 1: Statistics of Multilingual Speech Corpora.
2.2. Training HMMs and DNNs

Initially flat-start initialization is used to build Context-
Independent (CI) GMM-HMMs (referred as HMMs through-
out). The alignments generated by the CI HMMs are used to
initialise the training of Context-Dependent (CD) HMMSs. This
is further followed by training the CD DNN-HMMs (referred
as DNNs throughout) using the alignments obtained from the
CD HMMs. We have also trained CI DNNs using the align-
ments generated by the CI HMMs. The CI models are based
on monophones, while the CD models are based on triphones.
The mapping from phonetic context and the HMM-state index,
to an emission probability density function is captured through
acoustic-phonetic decision tree [33]. Number of Gaussians,
number of transition states and number of transition ids depend
on the number of phones and context being modelled. For ex-
ample, baseline MPRS (in section 3) with 44 phones had 974
Gaussians, 132 transition states and 264 transition ids with CI
HMMs, while the CD HMMs for the same system had 15039
Gaussians, 2078 transition states and 4156 transition ids.
DNNs with tanh non-linearity at hidden layers and softmax
activation at the output layer are used. DNNs are trained using
greedy layer-by-layer supervised training. Initial learning rate
was chosen to be 0.015 and was decreased exponentially for
the first 15 epochs. A constant learning rate of 0.002 was used
for the last 5 epochs. Once all the hidden layers are added to
the network, shrinking is performed after every 3 iterations, so
as to separately scale the parameters of each layer. Mixing up
was carried out in the halfway between the completion of addi-
tion of all the hidden layers and the end of training. Stability of
the training is maintained through preconditioned affine compo-
nents. Once the final iteration of training completes, the models
from last 10 iterations are combined into a single model. Each
input to DNNs uses a temporal context of 9 frames (4 frames
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on either side). The number of hidden layers for DNNs used
in both AF-predictors and MPRSs are tuned, by adjusting the
width of the hidden layers. It is found that the DNNs with 4
hidden layers are good for AF-predictors (in section 4.1), and
DNNs with 5 hidden layers are suitable for MPRSs (in section
3). DNNs with dimensions of 432 input, 300 hidden, and 19860
output layer are used for training the baseline MPRS (in section
3). The total number of parameters of the DNNs range between
1.9 million to 2.0 millions based on the dimension of the fea-
tures used. The size of the input layer depends on the dimension
of features used for training the DNNs.

Bi-phone (phoneme bi-grams) language model is used for
decoding. The language model weighting factor and acoustic
scaling factor used for decoding the lattice are optimally deter-
mined using the development set to minimize the PER. DNNs
training used in this study is similar to the one presented in [34].
All the experiments are conducted using the open-source speech
recognition toolkit - Kaldi [35].

3. Development of Multilingual Phone
Recognition Systems

A MPRS is developed using four Indian languages - KN, TE,
BN, and OD. The common multilingual phone-set is derived
by grouping the acoustically similar IPAs across languages to-
gether and selecting the phonetic units which have sufficient
number of occurrences to train a separate model for each of
them. The IPAs which do not have sufficient number of oc-
currences will be mapped to the closest linguistically similar
phonetic units present in the common multilingual phone-set.
The common multilingual phone-set thus derived contained 44
phones. We have also developed monolingual Phone Recogni-
tion Systems (PRSs) for KN, TE, BN, and OD languages using
36, 35, 34, and 36 phones, respectively. The 13-dimensional
MFCCs [36] along-with their first and second order derivatives
are computed using a frame-length of 25 ms with a frame-shift
of 10 ms. Cepstral mean and variance normalization is applied
per-speaker basis on MFCCs, followed by transformation us-
ing linear discriminant analysis. Both HMMs and DNNs are
explored for developing PRSs under CD and CI settings.

Table 2 shows the PERs of monolingual and MPRSs. PER
is computed by comparing the decoded phones with the refer-
ence phone labels. In Table 2, as we move from left to right
PERs decrease in all the rows. This indicates that the CD mod-
els have lower PERs than CI models. In all the cases, DNNs
have shown improved performance compared to HMMs. Since,
the CD DNNs have shown least PERs in all the cases, we have
used only CD DNN:ss in all our further experiments.

CI CD
PRS HMM [ DNN | HMM [ DNN
Kannada 43.5 39.5 38.5 37.1
Telugu 42.1 35.5 35.0 30.7
Bengali 49.0 41.6 434 37.6
Odia 33.6 29.5 28.0 26.5
| MPRS [ 49.4 [ 39.8 [ 39.0 [ 35.1 ]

Table 2: PERs of Monolingual and Baseline Multilingual Phone
Recognition Systems developed using MFCCs.

MPRS training uses the data shared from all the four lan-
guages. This makes the data used in the development of MPRS
to have relatively higher number examples to be learnt by the
DNNs and results in more accurate acoustic models compared
to the monolingual systems, which are trained on a compara-



tively smaller amount of data. MPRS using CD DNNs outper-
form KN and BN monolingual PRSs. It is found that consonants
are better modelled by KN and TE PRSs, while the vowels are
more accurately modelled in BN and OD PRSs. MPRS takes
the mutual advantage of all the languages and results in more
accurate models for both consonants and vowels.

We have further analysed the causes for misclassifications
at language and phone levels. If the number of examples con-
tributed by a language towards training a phone are higher, then
the misclassifications due to that specific phone from that par-
ticular language will be lower, and vice-versa. For example, the
contribution of Odia language to the training data of /sh/ model
of MPRS is only 0.5%. This indicates that the /sh/ phones oc-
cur very rarely in Odia. Although none of the /sh/ occurrences
were present in the test data of Odia, but many fricatives (more
prominently /s/) are decoded as /sh/. This increased the overall
misclassification rate of /sh/. Similarly, the contribution of Odia
language to the training data of /1/ is only 2.3%, which resulted
in large misclassifications of Odia test utterances to /1y/.

4. Articulatory Features for Multilingual
Phone Recognition

We have used the DNNs for predicting the AFs from the speech
signal. The predicted AFs and MFCCs are combined using two
approaches namely - i) Lattice Rescoring Approach (LRA), ii)
Combining AFs as Tandem features (AF-Tandem). Figure 1
shows the block diagram of combination of AFs using LRA.
There are 3 stages in Figure 1. In the first stage, the AF predic-
tors are developed to predict the AFs for five AF groups from
MFCCs. DNNs are used to develop AF predictors. In the sec-
ond stage, the predicted AFs (output of first-stage) are com-
bined with the MFCCs to develop MPRSs. Since, these MPRSs
are developed using AFs and are arranged in tandem, we call
them AF based tandem MPRSs. Third stage is developed to
combine the AFs from multiple AF groups. In the third stage
LRA is used for combining the AF based tandem MPRSs de-
veloped in the second-stage.
AF-Predictors

Tandem MPRSs Combined Tandem

Multilingual PRSs

"/DNNS\ p], se AFs ~ N
k }_> dce Ars —[ Place —— —_—
— MFCCs — ||LRA [ Consonant-
DNN '—»Manner AFs ™ | AF-based )
M 4" s »[ Manner —- )
F - MFCCs an T AIAF
C ——[DNNS]—>R0undnei§ AFs. &’ ; _ W
C — . MFCCS H Roundness :‘ based 4
S —
—» DNNs > antneas AFs ( B
- . ] L—L Frontness }—g LRA [ Vowel
Mrces |_AF-based
> » Height AF: B
DNNS e% ht s‘)—.[ HClght —+{J LRA = Lattice Rescoring
MFCCs S Approach

Figure 1: Development of MPRS using Articulatory Features
based on Lattice Rescoring Approach.

In AF-tandem approach of combining the AFs, the esti-
mated AFs from all the five AF groups are used as tandem fea-
tures along-with MFCCs to develop MPRSs. Following subsec-
tions provide a detailed description.

4.1. Development of Articulatory Feature Predictors

AFs are predicted for five AF groups - place, manner, round-
ness, frontness, and height - using AF predictors. We have ex-
plored both DNNs and shallow neural networks having one hid-
den layer (FFNNs) to develop AF predictors. The frame-level
AF labels required for training the models for each AF group
are obtained by mapping the phone labels to AF label. MFCCs
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with 39 dimensions are used for training the AF-predictors. Ta-
ble 3 shows the AF specification for different AF groups. AF-
predictors are trained for classification of the features shown
in Table 3. The cardinality indicates the number of classes in
a AF group. The posterior probabilities generated by the AF-
predictors represent AFs.

AF Grp (Crd) Features

Place (9) bilabial, labiodental, alveolar, retroflex, palatal, velar,
glottal, vowel, silence

Manner (6) plosive, fricative, approximant, nasal, vowel, silence

Roundness (4)
Frontness (5)
Height (6)

rounded, unrounded, consonant, silence
front, mid, back, consonant, silence
close, close-mid, open-mid, open, consonant, silence

Table 3: Articulatory Feature Specification for Different AF
Groups (Crd = Cardinality).

The performance of AF-predictors is evaluated by com-
puting the frame-wise accuracy and the Mean Squared Error
(MSE) between the predicted and oracle AFs. The frame-wise
accuracy of each AF predictor is computed by comparing the
predicted AF label of each frame with that of the actual AF la-
bel [16, 17]. Table 4 shows the framewise accuracy for various
AF groups. The results of DNNs (5 hidden layers) and FFNNs
(1 hidden layer) are shown separately. It is found that the per-
formance of DNNs is much better compared to that of FFNNs
for all the AF groups. We have also made similar observations
on CI DNNs. This indicates that the use of DNNs is more ben-
eficial compared to shallow neural networks for estimating the
AFs. Hence, the DNN based AF-predictors are considered in
all our experiments. Roundness AF group shows the highest
accuracy, while the height AF group has shown least perfor-
mance. We have also tried out voicing AF group with three
classes - voiced, unvoiced and silence. But, the performance of
voicing AF group was very poor (around 54%). This was due
to the large number of misclassifications between silence and
unvoiced.

Framewise Accuracy (%) Mean Squared Error (MSE)

AF Group | DNN(5HL) FFNN(IHL) | DNN(5HL) FFNN(THL)
Place 85.6 80.5 0.025 0.033
Manner 89.4 85.7 0.028 0.038
Roundness 90.8 87.1 0.037 0.055
Frontness 84.8 81 0.048 0.060
Height 80.5 77 0.051 0.059

Table 4: Framewise Accuracy and Mean Squared Errors of AF-
Predictors (HL = Hidden Layers).

4.2. Development of AF based Tandem Multilingual Phone
Recognition Systems

AFs predicted from each AF-predictor are augmented with
MFCCs to develop a AF based tandem MPRS. This results in
development of five AF based tandem MPRSs corresponding to
five AF groups. To establish the target performance achievable
by the predicted AFs, the oracle AFs for each AF group are ob-
tained as follows: The phone labels are mapped to AF labels
at framelevel. The framelevel posteriogram for oracle AFs is
generated by setting the posterior corresponding to the AF la-
bel to 1 and remaining posteriors to 0. The posteriogram thus
generated will be used as oracle AFs.

The PERs of AF based tandem MPRSs are shown in Ta-
ble 5. The results are shown separately for predicted and oracle
AFs. It is observed that the PERs of all the tandem MPRSs
shown in Table 5 are superior than the baseline MPRS (see bold
values in the MPRS row of Table 2). This clearly indicates that
the use of AFs has reduced the PERs. The average PER of
oracle AFs is 14.5% lower than that of predicted AFs. This in-



dicates that there is large scope to reduce the PERs of predicted
AFs (up to 14.5% on an average). In addition to the proposed
DNN based predicted AFs, alternative methods for predicting
the AFs can be explored including continuous valued AFs.

The place AF-based tandem MPRS has shown the high-
est reduction in PER, and roundness AF based tandem sys-
tem has shown least reduction using predicted AFs. This is be-
cause place AF group has highest cardinality (i.e. 9), while the
roundness has least cardinality (i.e. 4) as shown in Table 3.
The cardinality indicates number of feature classes (i.e. feature
dimension). Higher cardinality (higher feature dimension) pro-
vides more discriminative information to classify among var-
ious phonetic units. This results in improved phone recogni-
tion accuracy and reduces the PER. Similarly, lower cardinal-
ity would lead to higher PER. The consonant AF based sys-
tems have lower PERs compared to vowel AF based systems.
It is found that misclassifications among the consonants are re-
duced in consonant AF based systems, and the misclassifica-
tions among the vowels are reduced in vowel AF based systems.

PER (%) of CD DNNs

Features Predicted AFs | Oracle AFs
MFCCs + Place 33.5 21.1
MFCCs + Manner 34.1 24.0
MFCCs + Round 349 26.8
MEFCCs + Front 34.1 26.9
MFCCs + Height 34.3 23.1

Table 5: PERs of AF based Tandem Multilingual Phone Recog-
nition Systems.

4.3. Combination of AFs from Multilple AF Groups

The AFs from different AF groups are combined together to
take the mutual advantage of all the AFs at the same time. We
have explored 2 approaches for combination - i) LRA approach,
ii) AF-Tandem approach. In LRA approach, the lattices gen-
erated by the AF based tandem systems are combined using
the lattice rescoring method [37]. The weighting factors re-
quired for LRA are tuned using development set. In AF-Tandem
method of combination, the AFs are augmented as tandem fea-
tures along-with MFCCs to develop MPRSs [16, 17]. The AFs
derived from the consonant AF groups are combined to develop
consonant-AF-based MPRS, while the vowel-AF-based MPRS
is developed by combining the AFs from vowel AF groups. All-
AF-based MPRS is developed by combining all the five AF-
based tandem systems.

Table 7 shows the PERSs of different AF-based MPRSs com-
bined using LRA and AF-Tandem approaches. The results are
shown separately for predicted and oracle AFs. The improve-
ments in the performance are consistent. The Consonant-AF-
based has higher PER reduction compared to Vowel-AF-based,
while the All-AF-based has higher PER reduction compared
to Consonant-AF-based system. The PER of All-AF-based
MPRS using oracle AFs is 22.3% lower than that of predicted
AFs. Given the remarkably low PER of ~10% for oracle based
MPRS, there is much scope for enhanced prediction of AFs to
improve the MPRS to reach the performance of oracle AFs.

Further, we have also explored combining the Phone Poste-
riors (PPs) along-with all the predicted AFs to develop All-AF-
PP-based MPRS. Similar to AFs, the PPs are predicted from
the MFCCs using DNNs as described in [38]. All-AF-PP-based
MPRS based on LRA has shown a PER of 32.6%, while the AF-
Tandem method resulted in a PER of 32.3%. It is observed that
the LRA method of combination has least PERs for consonant-
AF-based, vowel-AF-based, and All-AF-based MPRSs, while

1019

Combined Predicted AFs Oracle AFs
MPRSs LRA [ AF-Tandem | LRA [ AF-Tandem
VAB 33.4 34.8 22.1 21.8
CAB 33.0 33.7 19.6 17.8
AAB 32.7 33.5 12.9 10.4

Table 6: PERs of Combined Tandem Multilingual Phone Recog-
nition Systems (VAB = Vowel-AF-based, CAB = Consonant-AF-
based, AAB = All-AF-based).

the AF-Tandem method of combination has shown least PERs
for All-AF-PP-based MPRS. Since the oracle PPs are same as
the ground truth reference labels, it does not make any sense to
use oracle PPs as the features. Hence, we have not conducted
any experiments related to All-AF-PP-based MPRS using ora-
cle PPs.

. Predicted AFs
Combined MPRS LRA | AF-Tandem
All-AF-PP-based MPRS | 32.6 32.3

Table 7: PERs of All-AF-PP-based Multilingual Phone Recog-
nition Systems.

The AF-Tandem method (through All-AF-PP-based
MPRS) has shown the least PER of 32.3% with an absolute
reduction of 2.8% in the PER (8% reduction in relative PER)
compared to baseline MPRS. The PER of best performing
MPRS (32.3%) is much better than the average of PERs of all
monolingual PRSs (33.0%). The AF-Tandem method not only
performs better than LRA but also has less complex structure
than LRA. The time complexity of LRA is almost 5x higher
than AF-Tandem in terms of both training and decoding.

There are 33 consonants and 11 vowels in the phone set
considered. Around 55% of the test data is made of conso-
nants, whereas only 45% constitutes vowels. Out of 45% of
vowel data 15% is wrongly classified, while 26% out of 55% of
consonant data is wrongly classified. This means that there is
a larger scope to reduce the misclassifications within the con-
sonants than vowels. Since the consonant AFs mainly reduce
the misclassifications within the consonants and there is larger
scope to reduce the misclassifications within the consonants, the
consonant-AF-based MPRS has shown higher improvement in
PERs compared to the vowel-AF-based MPRS. Since there are
only few vowel classes, the vowels classification using MFCCs
itself provides a reasonably good recognition accuracy and there
is not much scope for further improvement in the recognition
accuracies using vowel AFs, which reduce the misclassifica-
tions among vowels. Also the number of discriminative feature
classes in consonants AFs are higher than that of vowel AFs.

5. Summary and Conclusions

The baseline MPRS developed using CD DNNs has PER close
to that of average of monolingual PRSs. The AFs predicted
from DNNss are better than that of shallow neural networks. The
combination of AFs using AF-Tandem method performs better
than that of LRA method. The best performing predicted AFs
have shown a reduction of 2.8% in absolute PER (8% reduction
in relative PER), while the oracle AFs have shown an absolute
reduction of 24.7% compared to baseline MPRS. Given the re-
markably low PER of ~10% for oracle based MPRS, it is con-
cluded that there is much scope for enhanced prediction of AFs
to improve the MPRS to reach the performance of oracle AFs.
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