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Abstract
Achieving high accuracy with end-to-end speech recognizers
requires careful parameter initialization prior to training. Oth-
erwise, the networks may fail to find a good local optimum.
This is particularly true for online networks, such as unidi-
rectional LSTMs. Currently, the best strategy to train such
systems is to bootstrap the training from a tied-triphone sys-
tem. However, this is time consuming, and more importantly,
is impossible for languages without a high-quality pronuncia-
tion lexicon. In this work, we propose an initialization strategy
that uses teacher-student learning to transfer knowledge from a
large, well-trained, offline end-to-end speech recognition model
to an online end-to-end model, eliminating the need for a lexi-
con or any other linguistic resources. We also explore curricu-
lum learning and label smoothing and show how they can be
combined with the proposed teacher-student learning for further
improvements. We evaluate our methods on a Microsoft Cor-
tana personal assistant task and show that the proposed method
results in a 19% relative improvement in word error rate com-
pared to a randomly-initialized baseline system.

1. Introduction
Recently, several so-called end-to-end speech recognition sys-
tems have been proposed in which a neural network is trained
to predict character sequences which can be converted directly
to words, or even word sequences directly. Approaches to end-
to-end systems typically utilize a Connectionist Temporal Clas-
sification (CTC) framework [1–7], an attention-based encoder-
decoder framework [8–10], or both [11–13]. These types of
models bypass much of the complexity associated with a tradi-
tional speech recognition system, in which an acoustic model
predicts context-dependent phonemes, which are then com-
bined with a pronunciation lexicon and a language model to
generate hypothesized word sequences. As such, they have the
potential to dramatically simplify the system building process
and even outperform traditional systems as the unified model-
ing framework avoids the disjointed training procedure of con-
ventional systems.

Many prior studies on end-to-end models [2, 4, 7–9, 11, 14]
showed promising results with bidirectional recurrent neural
networks (RNNs) that exploit access to the entire utterance.
However, such models are not appropriate for online applica-
tions when the speech signal needs to be processed in a stream-
ing manner. When there are such requirements for an end-to-
end system, the most appropriate architecture is a causal model,
such as a unidirectional RNN, trained with a CTC objective
function. Unfortunately, when such models are trained from
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scratch, i.e. from randomly initialized parameters, performance
is severely degraded.

As a result, many methods for initializing the parameters of
online end-to-end speech recognition systems have been pro-
posed in the literature. Most of these methods first train a
tied-triphone acoustic model and then one or more intermediate
models before finally having a model initialized well enough
that character-based end-to-end training can be reliably per-
formed. For phoneme-based CTC, bootstrapping the CTC mod-
els with the model trained with cross-entropy (CE) on fixed
alignments has been proposed to address this initialization issue
[15]. Recently, a method for training tied-triphone CTC models
from scratch was proposed but it still requires a pronunciation
lexicon [16]. Alternatively, training the models jointly using a
weighted combination of the CTC and CE losses has been sug-
gested [17]. In case of the grapheme-level or word-level CTC
models, it was shown that starting from phoneme-based model
was essential in obtaining better performance [18–20].

While these approaches significantly improve the perfor-
mance of the resulting model, they are highly unsatisfying.
First, it makes system development complex and time consum-
ing, as multiple complete systems need to be trained, discarding
one of the most appealing aspects of end-to-end models. Sec-
ond, for lower resource languages, a high-quality pronunciation
lexicon may not be available, making such initialization strate-
gies impossible to use.

In this work, we propose a method for initializing and train-
ing a high accuracy online CTC-based speech recognition sys-
tem entirely within the end-to-end framework. Our method
uses teacher-student learning, curriculum learning, and label
smoothing, to achieve significantly improved performance for
an online end-to-end speech recognition system. We avoid any
initialization that relies on a pronunciation lexicon, a senone or
tied-triphone acoustic model, or any other artifacts from a tradi-
tional speech recognizer. Nevertheless, we obtain performance
that approaches that of the best performing CTC systems that
have been derived from tied-triphone models. We experimen-
tally validate our approach on the Microsoft Cortana personal
assistant task. A training set of 3,400 hours is used, demonstrat-
ing that the proposed approach is effective even when abundant
training data is available.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review CTC-based end-to-end speech recog-
nition. We then describe our proposed initialization and train-
ing strategies in Section 3 including the use of teacher-student
learning, curriculum learning, and label smoothing. In Section
4, we evaluate our approach on the Microsoft Cortana task. Fi-
nally, we summarize our findings in Section 5.
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2. End-to-end speech recognition with
character-based CTC

In this work, we use Connectionist Temporal Classification
(CTC) [1] with character outputs for our end-to-end model, as
it is well-suited to online applications.

CTC allows the network to learn a variable-length sequence
labeling problem where the input-output alignment is unknown.
Given input features x = (x1, . . . , xT ), and the correspond-
ing grapheme label sequence y = (y1, . . . , yU ), CTC trains
the neural network according to a maximum-probability train-
ing criterion computed over all possible alignments. The prob-
ability of the possible label sequence is modeled as being con-
ditionally independent by the product of each label probability.
The loss function of the CTC model is computed as:

LCTC , − lnP (y|x) ≈ − ln
∑

π∈Φ

T∏

t=1

P (k = πt|x) (1)

where π is a label sequence in all possible expanded CTC path
alignments Φ which have the length T , and P (k = πt|x) is a
label distribution at time step t.

CTC uses a softmax output of the network to define a label
distribution P (k|x), where k represents each label among the
K graphemes and a blank symbol ε representing no emission of
output label. Deep recurrent neural networks (RNNs) are gen-
erally used to model the distribution over labels, P (k|x). Each
RNN hidden layer computes the sequence hl = (hl

1, · · · , hl
T )

and multiple RNN layers are stacked on top of each other. The
hidden vector in the l-th layer, hl, is computed iteratively from
l = 1 to L. The P (k|x) is defined by the softmax of the final
hidden layer hL

t as follows:

Pt(k|x) =
exp(hL

t (k))∑K+1
i=1 exp(hL

t (i))
(2)

For offline applications, it is common to use bidirectional RNNs
capable of modeling future context [21].

3. Improved character-based training for
online CTC systems

3.1. Teacher-student learning from offline to online models

Teacher-student learning is an approach that was originally pro-
posed to transfer knowledge from a large deep expert model
(teacher) to a smaller shallower model (student) [22–25]. The
student network is trained to minimize the difference between
its own output distributions and those of the teacher network.
This approach has been shown to be successful in several tasks
including acoustic modeling [26], speech enhancement [27],
and domain adaptation [28]. Inspired by these studies, we aim
to improve the accuracy of a unidirectional online model by
transferring knowledge from a bidirectional offline model that
does not have any latency or complexity constraints. The re-
cent work in [29] proposed a similar teacher-student method
and they use the criteria as an additional objective. Unlike their
frame-level teacher-student method degrades the performance,
our method improves the performance by using the teacher-
student criteria in a separate training step as follows.

3.1.1. BLSTM-CTC

The first step is to build an offline end-to-end model as our
teacher model. Since there is no latency restriction, we use a

Figure 1: Our proposed teacher-student learning for online
CTC models.

deep bidirectional RNN with LSTM units (BLSTM) to predict
the correct label sequence y given the entire utterance x. Each
BLSTM layer computes hl, the hidden representation in layer l
by combining the two hidden sequences: the forward hidden se-
quence

−→
h l computed from processing the input in the forward

direction, from t = 1→ T , and the backward hidden sequence←−
h l computed from processing the inputs in the backward direc-
tion from t = T → 1 as follows,

hl
t = Wfw

−→
h l

t +Wbw
←−
h l

t + b (3)
−→
h l+1

t = LSTM(hl
t,
−→
h l+1

t−1) (4)
←−
h l+1

t = LSTM(hl
t,
←−
h l+1

t+1) (5)

where Wfw,Wbw, b are trainable parameters, and h0
t = xt.

This model is trained using the CTC objective function de-
scribed in Section 2 using character labels. Because every pre-
diction the model makes is based on observing the entire utter-
ance (in either the forward or backward direction), the BLSTM
can be reliable trained from randomly-initialized model param-
eters.

3.1.2. LSTM-KL

Once the BLSTM-CTC model is trained, the next step is to
transfer the predictive ”knowledge” of this offline model to a
model that can operate in an online manner, without access to
the future input frames. To do so, we adopt a teacher-student
approach in order to train the LSTM model to minimize the
Kullback-Leibler (KL) divergence between the output distribu-
tions of the offline BLSTM-CTC model and the online LSTM-
CTC model.

Let θBLSTM be the optimized parameters of BLSTM-CTC
(teacher) , and Pt(k|x; θBLSTM) be the output distribution at
time step t generated from the BLSTM-CTC teacher model.
LetQt(k|x; θLSTM) be the output distribution at time step t gen-
erated from LSTM-KL student model. The goal is to find the
parameters θLSTM that minimizes the KL divergence DKL be-
tween these distributions,

DKL(Pt || Qt) =

K+1∑

k=1

Pt(k|x; θBLSTM) ln
Pt(k|x; θBLSTM)

Qt(k|x; θLSTM)

(6)

=H(Pt, Qt)−H(Pt) (7)
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where k ∈ {1, . . . ,K, ε} are the CTC labels including blank,
H(Pt, Qt) is the cross entropy (CE) term and H(Pt) is the en-
tropy term. We can ignore the entropy term, H(Pt), since its
gradient is zero with respect to θLSTM. Thus, minimizing the KL
divergence is equivalent to the CE between the two distributions
Pt and Qt:

LKL ,
T∑

t=1

H(Pt, Qt) (8)

=−
T∑

t=1

∑

i

Pt(k|x; θBLSTM) lnQt(k|x; θLSTM) (9)

Figure 1 illustrates teacher-student learning between the
BLSTM-CTC model and the LSTM-KL model.

3.1.3. LSTM-CTC

The last step in the training process is to optimize the online
LSTM-KL model using the CTC objective function, as de-
scribed in Section 2

LCTC(θLSTM) , − lnP (y|x; θLSTM) (10)

In the remainder of this section, we describe two enhancements
that can further improve CTC training.

3.2. Curriculum learning

Curriculum learning has been proposed as a means of improv-
ing training stability, particularly in the early stages of learning.
It was proposed to address the challenges of training deep neu-
ral networks under non-convex training criteria [30]. The main
idea is to present the network a “curriculum” of tasks, starting
with simple tasks and gradually increasing the task difficulty
until the primary task is presented to the model. This approach
is motivated by the observation that humans learn better with the
examples organized in a meaningful order from simple to com-
plex. Many prior studies [14, 31, 32] have shown improved per-
formance as well as learning speed in various tasks, including
language modeling, task memorization, and speech recognition.
Specifically, in [14], they organized the training set in increas-
ing order of the length and showed improved performance.

In this work, we explore two different curriculum strategies.
First, we train the network on subset of the training set that
consists of shorter length utterances, similar to prior study [14].
Because CTC training considers all possible sequences using
the forward-backward algorithm, shorter utterances which have
fewer possible paths are simpler to learn. After the network is
able to learn the subset of short utterances, the full training set is
introduced and training continues on the complete training set.

We also propose a new curriculum, where we reduce the
number of categories, and simplify the classification to only
four symbols: vowel, consonant, space, and blank. As the sim-
pler classification task is learned, the full character-based label
set is restored and training proceeds.

3.3. Label smoothing

Label smoothing is a general way to improve generalization
by adding label noise, which has the effect of penalizing low-
entropy output distributions, i.e. overly confident predictions.
The authors in [33] showed the effectiveness of such a strategy
on several well-known benchmark tasks, including image clas-
sification, language modeling, machine translation, and speech

recognition. However, they have only explored the effectiveness
of label smoothing in an encoder-decoder framework [8, 9].

We observed that the label distribution from the CTC mod-
els is primarily dominated by the blank symbol. Motivated by
this observation, we penalize low-entropy output distributions,
similar to prior study [33]. To do so, we add a regularization
term to the CTC objective function which consists of the KL
divergence between the network’s predicted distribution P and
a uniform distribution U over labels.

L(θonline) , (1− α)LCTC − α
T∑

t=1

DKL(Pt||U) (11)

where α is tunable parameter for balancing the weight regular-
ization term and CTC loss.

4. Experiments
4.1. Datasets

We investigated the performance of our proposed training
strategies on Microsoft’s U.S. English Cortana personal assis-
tant task. The training set has approximately 3,400 hours of
utterances, the validation set has 10 hours of utterances, and
the test set has 10 hours of utterances. As acoustic input fea-
tures, we used 80-dimensional log mel filterbank coefficients
extracted from 25 ms frames of audio every 10 ms. We em-
ployed a frame-skipping approach [34], where three consecu-
tive frames are concatenated to obtain a 240-dimensional fea-
ture vector. None of our experiments used a pronunciation lex-
icon except when we compared to a system initialized with a
tied-triphone model. Following [5], we used a label symbol in-
ventory consisting of the individual characters and their double-
letter units. An initial capitalized letter rather than a space sym-
bol was used to indicate word boundaries. This results in 81
distinct labels derived from 26 letters.

4.2. Training and Decoding

Our online LSTM-CTC model was a 5-layer LSTM [35, 36]
with 1024 cells in each layer. Each LSTM layer has a linear
projection to 512 dimensions. The offline BLSTM-CTC was a
5-layer network with 1024 cells in each direction, forward and
backward. The hidden layer outputs in both directions were
projected down to a 512-dimensional vector. When the models
were randomly initialized, all the weights of our models were
initialized with a uniform distribution in the range [-0.05, 0.05].
Parameters were trained using stochastic gradient descent with
momentum. We use an initial learning rate of 0.0001 per sam-
ple. After each epoch, the criterion of the development set is
evaluated, and if performance has degraded, the learning rate
was decreased by a factor of 0.7.

For the decoding, the most likely sequence of characters
was generated by the model in a greedy manner. The final out-
put sequence was then obtained by removing any blank symbols
or repetitions of characters from the output and replacing any
capital letter with a space and its lowercase counterpart. Note
that we did not use any lexicon or language models.

4.3. Results

We first compared the performance of an online LSTM model
trained from random initialization to an LSTM trained by boot-
strapping from a tied-triphone model. The tied-triphone initial-
ization procedure was as follows. First, the LSTM was trained

2915



using cross-entropy computed on frame-level tied-triphone la-
bels. Then, the model was retrained using CTC on tied-triphone
outputs. Finally, the output layer was removed and replaced
with character labels and then trained using a character-based
CTC criterion.

As shown in Table 1, a randomly initialized system obtains
a WER of 41.0%, while a tied-triphone-initialized system per-
forms significantly better, with a WER of 30.8%, a 25% rela-
tive improvement. This difference in performance demonstrates
that proper initialization is critical in training online end-to-end
systems. Our goal is to close this gap in performance without
relying on any of the linguistic resources required to build a
tied-triphone acoustic model.

We next evaluated the three proposed training strategies in-
dividually, and all three resulted in substantial improvements in
WER over the randomly-initialized baseline system. Curricu-
lum learning, label smoothing, and teacher-student model ini-
tialization provided 7.8%, 13.7%, and 12.2% relative improve-
ment in WER, respectively. The label smoothing technique
showed largest improvement when a value of α = 0.05 was
used in Equation (11). We also found that curriculum that fo-
cused on a simplified label set also improved performance but
did not work as effectively as one that focused on short utter-
ances, so the results are not shown.

When we combined the two top performing strategies,
teacher-student initialization and label smoothing, additional
improvement is obtained, showing a 33.9 % WER. In this con-
figuration, we first trained an LSTM-KL model, as described in
Section 3.1.2, and then used it as an initial model for training
with the CTC loss and the uniform distribution regularization.
Lastly, we evaluated the combination of all three training strate-
gies. This method performed best and obtained 33.2 % in WER,
a 19% relative improvement over a randomly-initialized LSTM
model. For reference, the table also shows the performance that
can be obtained using an offline bidirectional model. Interest-
ingly, even the performance of the BLSTM is improved consid-
erably from label smoothing.

Another way to interpret these results is by considering how
much the gap in performance between the randomly-initialized
system and the tied-triphone-initialized system was narrowed
by the proposed approach. There is a difference of 10.2% ab-
solute between the randomly-initialized system and the tied-
triphone-initialized system and the proposed approach reduces
this gap to 2.4%. Thus, the proposed approach has closed the
gap by over 75% in a way that does not rely on a pronunciation
lexicon.

Figure 2 shows the log-mel feature vectors for an utter-
ance and the corresponding character probabilities using models
trained with different training strategies. The black line shows
the probability of the blank symbol and the other colors corre-
spond to other letters. We manually chose an utterance that was
recognized incorrectly by the randomly-initialized LSTM but
correctly recognized by both the LSTM trained with the pro-
posed approach and a BLSTM trained with label smoothing.

The figure shows that an LSTM initialized with teacher-
student training has consistently higher probability on the most
likely output character compared to the randomly-initialized
where several of the most-likely characters only have a posterior
probability of 0.6 or less. It is also interesting to note the dif-
ferences in spike locations between the online models and the
offline BLSTM models. The BLSTM models can often have
spikes that precede the acoustic observations of the correspond-
ing letter as a result of the model processing information in the
forward and backward directions simultaneously.

Table 1: WER on test set of models with various training strate-
gies, curriculum learning (CL), label smoothing regularization
(LS), and teacher-student approach (TS). None of our experi-
ments used any language model or lexicon information.

Training Strategy WER(%) w/o LM
LSTM + random initialization 41.0
LSTM + tied-triphone pre-training 30.8
LSTM + CL 37.8
LSTM + LS 35.4
LSTM + TS 36.0
LSTM + TS + LS 33.9
LSTM + TS + CL + LS 33.2
BLSTM 27.8
BLSTM + LS 25.5

Figure 2: Comparison of the CTC label probabilities over the
input frames of the utterance ”Is it supposed to snow tonight”.
for various models: a) an LSTM with random initialization, b)
our proposed model with teacher-student learning, LSTM + TS
+ CL + LS, and c) an offline model BLSTM + LS.

5. CONCLUSION
We proposed a method to improve the accuracy for an online
end-to-end speech recognizer via teacher-student learning. We
transfer knowledge from a large, well-trained offline BLSTM
model to an online LSTM model, by minimizing the KL diver-
gence between the label distributions of the online model and
the offline model. Because our method does not require boot-
strapping from a tied-triphone system, it simplifies the train-
ing procedure and is beneficial for the languages where a pro-
nunciation lexicon may be unavailable. We also found that our
method can be easily combined with curriculum learning strate-
gies and label smoothing. Our model was shown to outper-
form models that are trained from random initialization, and
approach the performance of models bootstrapped from tied-
triphone systems.
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