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Abstract
In this study, classification of the phonation modes in singing
voice is carried out. Phonation modes in singing voice can
be described using four categories: breathy, neutral, flow and
pressed phonations. Previous studies on the classification of
phonation modes use voice quality features derived from inverse
filtering which lack in accuracy. This is due to difficulty in de-
riving the excitation source features using inverse filtering from
singing voice. We propose to use the excitation source features
that are derived directly from the signal. It is known that, the
characteristics of the excitation source vary in different phona-
tion types due to the vibration of the vocal folds together with
the respiratory effort (lungs effort). In the present study, we are
exploring excitation source features derived from the modified
zero frequency filtering (ZFF) method. Apart from excitation
source features, we also explore cepstral coefficients derived
from single frequency filtering (SFF) method for the analysis
and classification of phonation types in singing voice.
Index Terms: Singing voice, Excitation source, Phonation
type.

1. Introduction
Humans have the capability of producing a wide variety of vari-
ations in voice by manipulating the interaction between vocal
folds and vocal tract. This result in the characteristics of voice
such as emotions, phonations etc. It is the singing voice that
gives an identity to music by providing the meaning that no
other instrument can give. One of the most salient features of
singing voice is the voice quality/phonation mode. The voice
quality is roughly considered as timbre or coloring to the voice.
Singer identity and the feelings are expressed through modula-
tions of the voice quality. In this study, our focus is on analysis
and classification of phonation modes in singing voice.

According to studies in [1–3], there exists four phonation
modes in singing. They are: breathy, modal, flow (or resonant)
and pressed phonations. For example, breathy voice may be
used to express sweetness, pressed voice may be used for ex-
pressing stronger expressions and flow phonation may be en-
countered in very active singing. The source for phonation
modes primarily arises due to the adjustments made at the lar-
ynx. From the studies on speech and singing [4, 5], phonation
modes have three dimensions: 1) pitch, 2) loudness and 3) la-
ryngeal adjustments. The main production characteristics of
four phonation modes are given briefly below.

Pressed phonation is associated with an elevated larynx po-
sition which influences the vocal tract shape and also stronger
muscular tension around the vocal folds. The pressed voice con-
tains richer harmonic content [6]. In breathy phonation, there is
a reduced vocal fold adduction and minimal vocal fold contact
area. This results laxed voice with high level of turbulent noise.

Harmonic to noise ratio is generally higher than other phona-
tions [7]. Strong perceptual indicator of breathiness is the sen-
sation of excessive laryngeal airflow [8]. Flow voice is typically
produced by a lowered larynx and it is defined more as a vocal
technique as it is used exclusively in singing unlike the other
modes which require vocal training [9]. The loudness is the key
thing in this type where the aim is to achieve higher levels of
loudness with lesser effort. The characteristics in this phona-
tion are formant tuning, ample harmonic content and narrowing
of the laryngeal vestibule. In modal voice (normal phonation),
we can find a full vibration of the vocal folds, along their entire
length.

Automatic detection of the phonation mode could help to
diagnose vocal disorders such as the hypo-function and hyper-
function of the glottis [10]. Also, many singing students exhibit
varying degrees of these malfunctions throughout the course of
their studies, teachers could be assisted to correct this during
lessons. Apart from singing, phonation modes also play an im-
portant role in speech such as for emotion recognition [11, 12].

Several studies have investigated phonation modes from
singing with voice quality features derived from inverse filter-
ing [1, 6, 10]. The voice quality feature set consists of nor-
malized amplitude quotient (NAQ) [13], quasi-open quotient
(QOQ) [14,15], H1-H2, parabolic spectral parameter (PSP) [16]
and maximum dispersion quotient (MDQ) [17]. Subglottal
pressure was also found to correlate with the amount of pressed-
ness [18]. The NAQ describes the glottal closing phase and was
shown to be robust than the closing quotient when separating
breathy, neutral and pressed spoken vowels [15, 17, 19]. This
capability transfers to the singing voice. Other features have
been proposed for discriminating breathy from tense voices,
such as the peak slope [20] and the maxima dispersion quotient
(MDQ) [17]. The cepstral peak prominence (CPP) feature was
shown to correlate strongly with ratings of perceived breathi-
ness [21]. It was observed that, the voice quality features alone
are not sufficient for classification. This is mainly due to inverse
filtering problems from singing voice, as singing voice has sig-
nificant source-filter coupling. In [10], authors used large num-
ber of spectral statistics such as spectral centroid, spectral flux,
spectral energies in different bands along with various voice
quality features and MFCCs. Recently in [6], authors studied
the features such as harmonic amplitudes, formant frequencies,
bandwidths and amplitudes, harmonic-to-noise ratio along with
voice quality features. It was observed that the confusions are
between breathy and modal, and flow and pressed phonations.

In this study, we propose to use excitation source features
derived directly from the speech signal without using inverse
filtering of speech. For deriving these features, we use modified
zero frequency filtering (ZFF) method. We also propose to use
cepstral coefficients derived from recently proposed single fre-
quency filtering (SFF) method, which provides higher spectro-
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temporal resolution.
The organization of the paper is as follows. Section 2

describes the feature extraction and the analysis of excitation
source features. In Section 3, we discuss the experimental pro-
tocol which includes the databases used and features for com-
parison. Details of classification experiments and discussion on
results are given in Section 4. Finally, section 5 gives a sum-
mary of the study.

2. Signal Processing Methods for Feature
Extraction

In this section, we describe features related to excitation source
component which are derived from modified ZFF method for
singing voice [22]. Also, we describe the features that reflect
the effect of excitation in the spectral characteristics, which are
derived from the SFF method [23, 24]. It is to be noted that,
these two signal processing methods do not assume source-filter
model of speech production mechanism.

2.1. Modified zero frequency filtering (ZFF) method

The zero frequency filtering (ZFF) [25] method gives the robust
estimates of glottal closure instants (GCIs). The modified ZFF
method can handle rapid and wider variations in pitch like in
singing voice [22]. In the modified ZFF method, the differenced
speech signal is passed through a resonator (given in Eqn. (1)),
and the trend in the resonator output (y0[n]) is removed by using
a moving average filter (given in Eqn. (2)) [22].

y0[n] = −
2∑

k=1

aky0[n− k] + x[n], (1)

where a1 = −2 and a2 = 1.

y[n] = y0[n]− 1

2N + 1

N∑

m=−N
y0[n+m], (2)

where 2N + 1 corresponds to the number of samples used for
computing the trend. This operation is repeated twice i.e., pass-
ing the signal (y[n]) through a resonator and removing the trend.
This repetition operation is different from passing the signal
through three resonators and removing the trend. The result-
ing signal oscillates according to variation of local pitch pe-
riod [22], and is referred to as modified ZFF signal. The instants
of negative-to-positive zero crossings (NPZCs) correspond to
the glottal closure instants (GCIs).

Features of excitation source: From the modified ZFF
method, we derive the excitation features such as strength of
excitation (SoE), energy of excitation (EoE), loudness mea-
sure and ZFF signal energy. Let the epochs be denoted by
E = {e1, e2, ..., eM}, where M is the number of epochs. The
time duration between two successive epochs gives the instan-
taneous fundamental period (or the pitch period T0), and its re-
ciprocal gives the instantaneous fundamental frequency (F0).

The slope of the ZFF signal around each NPZCs corre-
sponds to the SoE, which is proportional to the rate of closure
of the vocal folds [26]. A measure of SoE around the GCI is
given by

SoE = |y[ek + 1]− y[ek − 1]|, k = 1, 2, ...,M. (3)

The energy of excitation (EoE) feature is computed from the
samples of the Hilbert envelope of the LP residual over 2 ms
region around each GCI. This measure gives the vocal effort

[26]. A 10th order LP analysis is used for each frame of 16 ms
and a frame shift of 2 ms.

EoE =
1

2K + 1

K∑

i=−K
h2
e[i], (4)

where 2K+1 corresponds to the number of samples in the 1 ms
window. Loudness (perceived loudness) measure captures the
abruptness of glottal closure [27] and it is the ratio of standard
deviation and mean of the samples of the Hilbert envelope of
LP residual signal around GCI.

The other excitation parameter is the energy of the ZFF sig-
nal and is computed as

vzff [n] =
1

L

L/2∑

i=−L/2
y2[n+ i], (5)

where y[n] is the ZFF signal, and L corresponds to the window
length (10 ms) over which the energy is computed. The energy
of the ZFF signal at GCI is considered in this study. These fea-
tures are shown to be useful for the analysis and discrimination
of phonations and emotions in speech [28, 29].

2.2. SFF method and Extraction of SFFCC

The objective of SFF is to derive the amplitude envelope of the
signal as a function of time. The spectro-temporal resolution
can be adjusted by varying the r parameter, which represents the
pole location in the z-plane. The steps involved in SFF method
are as follows [23, 24].

1. The input speech signal s[n] is pre-emphasized to re-
move any low frequency components.

x[n] = s[n]− s[n− 1]. (6)

2. The signal (x[n]) is multiplied with a complex exponen-
tial ejw̄kn, where w̄k = π − wk = π − 2πfk

fs
. The

resulting frequency shifted signal is represented by

x[n, k] = x[n]ejw̄kn, (7)
where k ranges from 0 to K, (K=fs/2).

3. The frequency shifted signal x[n, k] is passed through a
single-pole filter H(z), where

H(z) =
1

1 + rz−1
. (8)

Here, the r value is chosen as 0.995.
4. The output of the filter (y[n, k]) is given by

y[n, k] = −ry[n− 1, k] + x[n, k]. (9)
The amplitude envelope of the signal y[n, k] is given by

v[n, k] =
√

(yr[n, k])2 + (yi[n, k])2, (10)

where yr , yi represents the real and imaginary parts re-
spectively. The term v[n, k] corresponds to the SFF en-
velope of the signal at frequency fk. The magnitude
spectrum can be obtained for each instant of n.

Figure 1 gives an illustration of SFF spectrograms for
breathy, modal, flow and tense/pressed phonations for vowel A
in Soprano singing category. It can be clearly seen that there
exists a significant variations in the spectrum. In order to cap-
ture these variations, we propose to derive the single frequency
filtering cepstral coefficients (SFFCCs).
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Figure 1: An illustration of SFF spectrograms for breathy, modal, flow and tense phonations for vowel A in Soprano singing category.

Figure 2: Block diagram of single frequency filter cepstral coefficients (SFFCCs) extraction [30].

2.2.1. SFFCC Extraction

Cepstrum c[n, k] is computed from SFF spectrum v[n, k], and
is given by

c[n, k] = IFFT (log(v[n, k])). (11)

From c[n, k], first 13 cepstral coefficients are considered and
they are named as single frequency filtering cepstral coefficients
(SFFCCs). The SFFCCs can be obtained at each sampling in-
stant. In this study, instead of computing at each instant, we
computed the SFFCCs at GCI locations. The schematic block
diagram of SFFCCs extraction is shown in Fig. 2.

2.3. Feature analysis

The distributions of the proposed excitation source features
(SoE, EoE, Loudness and ZFF energy) are given in Fig. 2. It can
be seen that SoE values are high for breathy, and low for pressed
and flow phonations. EoE values are high for pressed voice,
followed by flow, modal and breathy voice (low EoE values).
This parameter indicates the vocal effort required for producing
the phonation type. The perceived loudness values are low for
breathy voice than for modal, and pressed and flow phonations
have relatively higher values. The ZFF signal energy comes
out to be lower for pressed and flow followed by modal and
breathy. From the box plots, it can also be observed that there
exists a significant overlap of the feature values between modal
and breathy, and flow and tense voices. This is also confirms
the studies reported in [1, 6, 10]. In all, there exists a good
separation among the feature values for the discrimination of
phonation types.

3. Experimental protocol
This section describes the singing phonation database and the
features (voice quality features and MFCCs) used for compar-
ison with proposed features (excitation features derived from
modified ZFF method and SFFCCs).

3.1. Database used

We use the phonation dataset described in [1], which contains
sustained vowels sung by a soprano female professional (in
singer’s native language, Russian) recorded at a sampling fre-
quency of 44.1 KHz. The phonation modes correspond to Sund-
berg’s definitions of breathy, neutral, flow and pressed voice [3].
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Figure 3: Distribution of features for breathy, modal, flow and
tense phonation types using box plots. The central mark indi-
cates the median, and the bottom and top edges of the box indi-
cate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ′+′ symbol.

This database consists of 763 recordings of nine different vow-
els: A, AE, I, O, U, UE, Y, OE and E and with pitches ranging
from A3 to G5 [1]. The mean duration of the recorded samples
is 1.3 seconds with variation from 0.9 to 1.6 seconds. The full
dataset is used to enable a comparison with classification results
from previous studies.

3.2. Features for comparison

MFCCs and voice quality features are considered for com-
parison. These features are selected based on the findings in
[15, 17, 19], which showed the most suitable features for dis-
crimination of phonation modes. The voice quality feature set
consists of NAQ, QOQ, H1-H2, PSP, and MDQ. Out of these,
first four features are derived from Inverse Filtering method
[31]. A brief description of the features is given below.
3.2.1. Normalized Amplitude Quotient (NAQ)

NAQ [13] is computed from two amplitude values, and it is
given by

NAQ =
fAC

dmin · T
, (12)
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where, fAC is the AC-amplitude of the flow, dmin is the neg-
ative peak amplitude of the glottal flow derivative and T is the
pitch period.

3.2.2. H1-H2

H1-H2 [15], is the difference between the amplitudes of the first
two harmonics in the voice source spectrum.

3.2.3. Quasi-open quotient (QOQ)

The QOQ [14, 15] is related to the open quotient. Quasi-open
phase divided by the local pitch period gives QOQ.

3.2.4. Maximum dispersion quotient (MDQ)

The MDQ [17] parameter measures the dispersion in the LP
residual around the GCI and it captures abruptness of glottal
closure.

3.2.5. Parabolic Spectral Parameter (PSP)

PSP [16] is derived by fitting a parabola to the low frequency of
glottal flow spectrum.

3.2.6. MFCCs

In this study, we derived 13 mel-frequency cepstral coefficients
using 25 ms Hamming windowed frames, with 5 ms shift.

4. Classification Experiments and
Discussion on Results

The experiments are carried out using support vector ma-
chines (SVMs) with a radial basis function (RBF) kernel [32].
Classification experiments are conducted using 10-fold cross-
validation. The dataset is partitioned (randomly) into 10 equal
sets and one fold is held out to be used for testing with the re-
maining set for training. In each fold classification accuracies
are saved and the process is repeated for 10-folds. The experi-
ments are carried out for 7 different feature vectors:

• VQ=[NAQ,QOQ, H1-H2, PSP and MDQ]
• MFCC
• VQ+MFCC
• Excitation =[SoE, EoE, Loudness and ZFF energy]
• SFFCC
• Excitation+SFFCC
• MFCC+Excitation+SFFCC

Table 1: Mean and standard deviation of classification accu-
racy (in %) after 10-fold cross validation with different input
feature vectors.

Features Mean accuracy[%] Standard deviation[%]
VQ 29.18 10.17
MFCC 61.05 06.33
VQ+MFCC 34.47 15.32
Excitation 52.11 05.92
SFFCC 65.24 04.05
Excitation+SFFCC 67.12 06.12
MFCC+Excitation+SFFCC 70.92 06.24

The results of the 10-fold cross validation experiment are
shown in terms of mean and standard deviation of the classi-
fication accuracies in Table 1. From the table, it can be seen
that including parameters such as MFCCs, excitation features,
and SFFCCs (i.e., MFCC+Excitation+SFFCCs) gives the high-
est average classification accuracy (70.92%). It can also be ob-
served that classification accuracy with SFFCCs gives the high-
est compared to VQ features and MFCCs. It is to be noted that,

Table 2: Confusion matrix (in %) with 10-fold cross validation
after combining Excitation and SFFCC features (i.e., Excita-
tion+SFFCC).

Breathy [%] Modal [%] Flow [%] Tense [%]
Breathy 73.54 25.40 0 1.06
Modal 16.91 65.44 4.41 13.24
Flow 0 3.96 58.42 37.62
Tense 2.10 10.81 20.72 66.37

Table 3: Confusion matrix (in %) with 10-fold cross validation
after combining MFCC, Excitation and SFFCC features (i.e.,
MFCC+Excitation+SFFCC).

Breathy [%] Modal [%] Flow [%] Tense [%]
Breathy 83.77 15.71 0 0.52
Modal 13.07 72.55 3.27 11.11
Flow 0 1.79 57.14 41.07
Tense 1.37 5.92 28.62 64.19

voice quality features are not able to to discriminate phonation
modes in singing unlike in speech [17, 19]. This is mainly be-
cause of the inverse filtering issues, as most of the features (ex-
cept MDQ) are derived from the glottal flow waveform. It is
known that inverse filtering methods fail for high pitched voices
[14, 33]. The four proposed excitation source features (directly
estimated from speech signal) are giving 52.11%. Combin-
ing the excitation features with SFFCCs increases the accuracy
(67.12%). This indicates that the excitation features and SF-
FCCs are providing complimentary information. The best clas-
sification accuracy of 70.92 % is achieved when the proposed
features are combined with the MFCCs.

Table 2 shows the confusion matrix for the combina-
tion of excitation source features and SFFCCs (i.e., Excita-
tion+SFFCCs). From the table, it can be observed that there is
a significant confusion between breathy and modal voice, and
flow and tense voice. This observation also complies with the
results reported in [1, 6, 10]. Table 3 shows the confusion ma-
trix for the combination of MFCCs, excitation source features
and SFFCCs (i.e., MFCC+Excitation+SFFCCs). It can be ob-
served that there is a significant reduction in confusion between
breathy and modal voice. But there is not much reduction in
discrimination between flow and tense voice. The discrimina-
tion can be further improved by including other voice quality
parameters. Also, there is a need for exploring features that can
capture the effect of excitation on the vocal tract system [3, 5],
especially for the discrimination of breathy and modal, and flow
and tense voices.

5. Summary and conclusion
In this paper, we investigated the discriminative and explana-
tory power of excitation source features derived from modified
ZFF method and cepstral coefficients derived from SFF method
for phonation mode classification. From the experimental re-
sults, it was shown that proposed excitation features and SF-
FCCs provides better discrimination of phonation modes. The
existing voice quality features lack in accuracy, mainly because
of the inverse filtering issues especially for high pitched voices
like singing. On the other hand, proposed features do not use
source-filter model of speech production for deriving features.
This suggests that the proposed features can be useful for ana-
lyzing continuous speech/singing.
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[18] M. Millgård, T. Fors, and J. Sundberg, “Flow glottogram charac-
teristics and perceived degree of phonatory pressedness,” Journal
of Voice, vol. 30, no. 3, pp. 287–292, 2016.

[19] D. Gowda and M. Kurimo, “Analysis of breathy, modal and
pressed phonation based on low frequency spectral density,” in
INTERSPEECH, 2013, pp. 3206–3210.

[20] J. Kane and C. Gobl, “Identifying regions of non-modal phona-
tion using features of the wavelet transform,” in INTERSPEECH,
2011, pp. 177–180.

[21] J. Hillenbrand, R. A. Cleveland, and R. L. Erickson, “Acoustic
correlates of breathy vocal quality,” Journal of Speech, Language,
and Hearing Research, vol. 37, no. 4, pp. 769–778, 1994.

[22] S. R. Kadiri and B. Yegnanarayana, “Analysis of singing voice
for epoch extraction using zero frequency filtering method,” in
ICASSP, Apr. 2015, pp. 4260–4264.

[23] G. Aneeja and B. Yegnanarayana, “Single frequency filtering ap-
proach for discriminating speech and nonspeech,” IEEE/ACM
Trans. on Audio, Speech, and Lang. Process., vol. 23, no. 4, pp.
705–717, Apr. 2015.

[24] S. R. Kadiri and B. Yegnanarayana, “Epoch extraction from emo-
tional speech using single frequency filtering approach,” Speech
Communication, vol. 86, pp. 52 – 63, 2017.

[25] K. S. R. Murty and B. Yegnanarayana, “Epoch extraction from
speech signals,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 16, no. 8, pp. 1602–1613, Nov. 2008.

[26] S. R. Kadiri, P. Gangamohan, S. V. Gangashetty, and B. Yegna-
narayana, “Analysis of excitation source features of speech for
emotion recognition,” in INTERSPEECH, 2015, pp. 1324–1328.

[27] S. Guruprasad and B. Yegnanarayana, “Performance of an event-
based instantaneous fundamental frequency estimator for distant
speech signals,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 19, no. 7, pp. 1853–1864, Sept 2011.

[28] P. Gangamohan, S. R. Kadiri, and B. Yegnanarayana, “Analysis
of emotional speech at subsegmental level,” in INTERSPEECH,
Aug. 2013, pp. 1916–1920.

[29] S. R. Kadiri and B. Yegnanarayana, “Breathy to tense voice
discrimination using zero-time windowing cepstral coefficients
(ZTWCCs),” in INTERSPEECH, Sept. 2018.

[30] K. N. R. K. R. Alluri, S. Achanta, S. R. Kadiri, S. V. Gangashetty,
and A. K. Vuppala, “SFF anti-spoofer: IIIT-H submission for au-
tomatic speaker verification spoofing and countermeasures chal-
lenge 2017,” in Interspeech 2017, 2017, pp. 107–111.

[31] P. Alku, “Glottal wave analysis with pitch synchronous iterative
adaptive inverse filtering,” Speech Communication, vol. 11, no.
2-3, pp. 109–118, June 1992.

[32] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” vol. 2, July 2007.

[33] P. Alku, “Glottal inverse filtering analysis of human voice
production-a review of estimation and parameterization methods
of the glottal excitation and their applications,” Sadhana, vol. 36,
no. 5, pp. 623–650, 2011.

445


