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Abstract

In this paper, we consider breathy to tense voices, which are
often considered to be opposite ends of a voice quality con-
tinuum. Along with these, other aspects of a speaker’s voice
play an important role to convey the information to the listener
such as mood, attitude and emotional state. The glottal pulse
characteristics in different phonation types vary due to the ten-
sion of laryngeal muscles together with the respiratory effort. In
the present study, we are deriving the features that can capture
effects of excitation on the vocal tract system through a sig-
nal processing method, called as zero-time windowing (ZTW)
method. The ZTW method gives the instantaneous spectrum
which captures the changes in the speech production mecha-
nism, providing higher spectral resolution. The cepstral coeffi-
cients derived from ZTW method are used for the classification
of phonation types. Along with zero-time windowing cepstral
coefficients (ZTWCCs), we use the excitation source features
derived from zero frequency filtering (ZFF) method. The exci-
tation features used are: strength of excitation, energy of exci-
tation, loudness measure and ZFF signal energy. Classification
experiments using ZTWCC and excitation features reveal a sig-
nificant improvement in the detection of phonation type com-
pared to the existing voice quality features and MFCC features.
Index Terms: Speech analysis, Excitation source, Phonation
type.

1. Introduction
Voice quality or phonation type is considered as timbre or au-
ditory coloring of a speaker’s voice [1]. In the current study,
we consider breathy to tense voice, which are often considered
to be opposite ends of a voice quality continuum. Along with
these voice qualities, other aspects of a speaker voice such as
rhythm, timbre, intonation, intensity etc., play an important role
to convey the information such as mood, attitude and emotional
state [2, 3]. For example, studies in [4] shown that breathiness
has been associated with expressing politeness and also inti-
macy and familiarity. On the other hand, tense voice has often
been associated in more active (arousal) emotional states such
as anger and happy emotions [5, 6]. Analysis, representation
and detection of different voice qualities is desirable for vari-
ous applications. It is helpful for tagging the voice qualities in
highly expressive speech corpora [7]. The characterization of
voice quality is required for speech synthesis and voice qual-
ity modification systems [8–10]. Detection of the type of voice
quality may improve the performance of various speech pro-
cessing applications like cognitive load of a speaker, speaker
recognition, speech recognition, emotion recognition [11–19]
etc. Note that, voice quality also has a phonological contrastive
function in many languages [20, 21]

According to [1], voice qualities are compared with respect
to modal/neutral voice. In modal voice, the laryngeal tension
settings are in low and moderate range. The vocal folds vi-
brations are mostly periodic with a minimum irregularity in a
sequence of glottal cycles with a proper glottal closure (no au-
dible frication noise). Breathy voice typically involves weaker
levels of laryngeal tension, partial closure of the glottis and of-
ten a glottal chink. These settings lead to generation of some
amount of turbulence/aspiration noise at the vocal folds. As
a result of aspiration noise, lower frequency harmonics are ef-
fected compared to modal voice. On the other hand, tense voice
involves increase in longitudinal and adductive tension in terms
of laryngeal settings. However, this tension does not bring the
irregularities in vocal folds vibration, such as the case in harsh
voice. The abrupt/sharpness of glottal closure characteristics of
tense voice are reflected as stronger high frequency harmonics.

The characteristics of the glottal source varies in different
phonation types due to the tension of the laryngeal muscles to-
gether with the respiratory effort. Hence, the glottal source
waveform varies from a smooth symmetric form (typical case
for soft voices) to asymmetric waveform with sharp edges such
as occurs in the production of loud/pressed voices [22, 23].
This kind of time-domain variation is reflected as the decay of
the spectral envelope of glottal source in the frequency-domain
[24, 25]. Apart from these, there are also other parameteriza-
tion methods, where the estimated glottal source waveform is
matched with the glottal flow models such as LF model to ob-
tain the model parameters [6, 26].

In [22,27], various types of glottal source parameters (time-
based, amplitude-based and frequency-domain parameters) are
analyzed for discriminating breathy, modal and tense voices.
Frequency-domain parameters such as H1-H2 [25], harmonic
richness factor (HRF) [8] and parabolic spectral parameter
(PSP) [28] are derived by fitting a parabola to the lower fre-
quencies of the glottal source spectrum. Time domain parame-
ters such as closing quotient, quasi-open quotient (QOQ), open
quotient and the speed quotient and amplitude-based parameters
such as normalized amplitude quotient (NAQ) are derived from
the glottal flow and its derivative waveforms [11, 22, 29, 30].
Also, studies [25, 31] measured the amount of aspiration noise
present in the signal for the detection of breathy voice, based
on the observation that third formant region to be considerably
noisier in breathy compared to modal voice. In [6, 26], param-
eters derived after fitting the glottal flow model (such as LF
model) with the estimated glottal source were analyzed for var-
ious voice qualities.

From the studies [24,32], it was observed that NAQ and H1-
H2 are the best features for the identification of phonation types.
While NAQ feature gives a measure of the skewness of the glot-
tal pulse, H1-H2 feature captures its acoustic manifestation in
the frequency-domain. It was observed that, the effectiveness of
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the glottal source parameters reduce for high pitch and expres-
sive voices [11, 30]. To overcome this effect, recently attempts
were made to extract features directly from the speech signal. In
[32], to capture the sharp changes in glottal closure characteris-
tics, a parameter called maximum dispersion quotient (MDQ) is
proposed, which is derived from LP residual signal. In [24], the
production characteristics such as breathy voice having higher
open quotient and pressed voice having a least open quotient
were captured using spectral-domain parameter called low fre-
quency spectral density (LFSD). The effect on subglottal sys-
tem in the spectrum is higher for breathy voice (owing to higher
open quotient) compared to pressed/tense voice. This results in
increase of low frequency spectral energy for breathy voice, typ-
ically around the region of the glottal formant (lower than first
formant). From the studies [24], it was observed that LFSD
and MDQ are close to NAQ, and HNR seems to provide less
discrimination among three phonation types. However, HNR
was shown to provide good performance in the discrimination
of modal and breathy voices compared to modal and pressed
voices. Also, it was observed that H1-H2 performs poor for fe-
male speakers and it is as good as NAQ for male speakers. This
may be due to the overlap of second harmonic with the first for-
mant for female voice. In studies [24, 32] authors used a set
of voice quality features such as NAQ, QOQ, H1-H2, PSP and
MDQ for the classification of phonation. From the analysis, it
was observed that no single feature performs consistently bet-
ter for all the speakers in the discrimination of phonation types.
Hence, there is a need for exploring alternative features for the
analysis and classification of voices such as phonations types
from the speech signal. In this paper, we explore the features
that reflect the effect of excitation on vocal tract system through
cepstral coefficients derived from ZTW method [33] and exci-
tation features derived from ZFF method [34].

The organization of the paper is as follows. Section 2 de-
scribes the signal processing methods used for feature extrac-
tion. Section 3 describes the analysis of excitation source fea-
tures. In Section 4, we discuss the experimental protocol which
includes the databases and features used for comparison. De-
tails of classification experiments and discussion on results are
presented in Section 5. Finally, Section 6 gives a summary of
the study.

2. Signal Processing Methods for Feature
Extraction

In this section, we describe the features that reflect the effect of
excitation on the vocal tract system, derived from the zero time
windowing (ZTW) method [33]. We also use excitation source
features which are derived from ZFF method [34]. It is to be
noted that, either of these two signal processing methods do not
assume source-filter model of speech production mechanism.

2.1. ZTW Method and Extraction of ZTWCC

The objective of the method is to derive the instantaneous spec-
tral characteristics, so that the time varying characteristics of the
speech production mechanism can be captured. In this method,
the speech signal is windowed with a heavily decaying window
(which provides high emphasis to the samples near the start-
ing sampling instant, which is referred as zero time) gives high
temporal resolution, whereas the group delay provides good res-
olution of the spectral characteristics. Hence, the method pro-
vides higher temporal resolution, simultaneously maintaining
good spectral resolution. The ZTW spectrum was shown to

capture the excitation variations such as glottal opening, open
phase and also time varying system characteristics such as vo-
cal tract resonances effectively [33, 35].

The steps involved in extracting the instantaneous spectral
characteristics using the ZTW method [33] are as follows.

1. Consider a L msec speech segment s[n] (number of
samples, M = L ∗ fs/1000) at each instant. The seg-
ment is appended with sufficient number of zeros before
computing N -point DFT for observing spectral charac-
teristics. In this study N = 2048 is used.

2. Multiply s[n] segment with a window w2
1[n]w2[n],

where

w1[n] = 0, n = 0,

=
1

4sin2(πn/2N)
, n = 1, . . . , N − 1,

w2[n] = 4 cos2(πn/2M), n = 0, . . . ,M − 1.

Multiplying the signal with the heavily decaying window
w2

1[n] is called zero time windowing, which emphasizes
the values near the beginning of the window. The win-
dow w2

1[n] gives approximately four times integration in
the frequency domain.

3. The numerator of group delay (NGD) function (g[k]) of
the windowed signal (i.e., of x[n] = w2

1[n]w2[n]s[n]) is
computed to estimate the spectrum and is given by

g[k] = XR[k]YR[k]+XI [k]YI [k], k = 0, . . . , N−1.

whereXR[k] andXI [k] are the real and imaginary parts
of the X[k], respectively, where X[k] is the N -point
DFT of x[n]. YR[k] and YI [k] are the real and imagi-
nary parts of the Y [k], respectively, where Y [k] is the
N -point DFT of y[n] (y[n] = nx[n]).

4. The resulting NGD function is double differenced
(g′′[k]) to highlight the spectral features such as reso-
nances/formants of the vocal tract system.

5. The low amplitude peaks in the double differenced NGD
plots are highlighted by computing its Hilbert envelope.
The resulting spectrum is called the HNGD spectrum,
and it is denoted as S[n, k] in this study.

Figure 1 gives an illustration of HNGD spectrograms for
breathy, modal and pressed phonations. It can be clearly seen
that there exists significant spectral variations due to excitation
effect on the system. In order to capture these variations, we
propose to derive the zero-time windowing cepstral coefficients
(ZTWCCs).

2.1.1. ZTWCC Extraction

Cepstrum c[n, k] is computed from ZTW/HNGD spectrum
S[n, k], and is given by

c[n, k] = IFFT (log(S[n, k])).

From c[n, k], first 13 cepstral coefficients are considered and
they are named as ZTWCCs. The ZTWCCs can be obtained
at each time instant. In this study, instead of computing at
each instant, we computed the ZTWCCs at glottal closure in-
stant (GCI) locations. From static (S) coefficients, delta (V)
and double-delta (A) coefficients are also computed, which
makes total of 39 dimension. The schematic block diagram of
ZTWCCs extraction is shown in Fig. 2.
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Figure 1: An illustration of HNGD spectrograms for breathy, modal and pressed phonations.

Figure 2: Block diagram of zero-time windowing cepstral coefficients (ZTWCCs) extraction.

2.2. Zero frequency filtering (ZFF) method

The ZFF [34] method gives the robust estimates of glottal clo-
sure instants (GCIs). The method is also useful for deriving fea-
tures such as instantaneous fundamental frequency and strength
of impulse-like excitation. The method relies on observation
that impulsive nature of the excitation is reflected across all fre-
quencies including zero frequency (0 Hz). Hence, the GCI lo-
cations are detected by confining the analysis around 0 Hz. In
this method, the pre-emphasized speech signal x[n] is passed
through a cascade of two ideal zero-frequency resonators. The
resulting signal grows/decays approximately as a polynomial
function of time. The trend is removed by subtracting the local
mean at each sample. The resulting signal is the zero-frequency
filtered (ZFF) signal. The locations of negative-to-positive zero
crossings (NPZCs) correspond to GCIs.

Features of excitation source: From the ZFF method,
we derive the excitation features such as strength of excitation
(SoE), energy of excitation (EoE), perceived loudness and ZFF
signal energy. The SoE is computed as the slope of the ZFF
signal around each NPZCs which is proportional to the rate of
closure of the vocal folds [36, 37]. The energy of excitation
(EoE) parameter is computed from the samples of the Hilbert
envelope of LP residual over 2 ms region around each GCI. This
gives a measure of the vocal effort [37]. A 10th order LP anal-
ysis is used for each frame of 16 ms and a frame shift of 2 ms.
Loudness (perceived loudness) measure captures the abruptness
of glottal closure [38]. It is defined as the ratio of standard de-
viation and mean of the samples of the Hilbert envelope of LP
residual signal around GCI. The other excitation parameter is
the energy of the ZFF signal, which is computed for a frame
size of 10 ms with a sample shift. The energy of the ZFF signal
at GCI is considered in this study.

3. Feature analysis
The distributions of the proposed excitation source features
mentioned above are given Fig. 3. It can be seen that SoE values
are high for breathy and low for pressed/tense voice. EoE val-
ues are high for pressed voice and low for breathy voice. This
is because the vocal effort is more in the case of pressed phona-
tion than breathy voice. The perceived loudness measure values
for breathy voice are lower than modal and pressed phonations.

The ZFF signal energy comes out to be lower for pressed fol-
lowed by modal and breathy. In summary, it can be observed
that there exists a significant discrimination among the feature
values for all the phonation types.
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Figure 3: Distribution of features for breathy, modal and
pressed phonation types using box plots. The central mark indi-
cates the median, and the bottom and top edges of the box indi-
cate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ′+′ symbol.

4. Experimental protocol
This section describes the phonation database used in the study
and the features (voice quality features and MFCCs) used for
comparison with proposed features (ZTWCCs and excitation
features derived from ZFF method).

4.1. Database used

The phonation database used in this study consists of 8 different
Finnish vowels uttered in three phonation types (breathy, modal
and pressed) by 6 female and 5 male speakers (aged between
18 and 48 years). Each vowel is uttered three times making it
a total of 792 (3*3*8*11) isolated vowels. The database was
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originally recorded at a sampling frequency of 44.1 kHz in an
anechoic chamber and later it is downsampled to 16 kHz. More
details of the database can be found in [22, 39].

4.2. Features for comparison

Voice quality features and MFCCs are considered for com-
parison. The selection of these features is based on the
findings in [22, 24, 32], which is shown to be the most suitable
measurements for discrimination of breathy to tense voice. The
voice quality feature set consists of NAQ, QOQ, H1-H2, PSP
and MDQ. Among these, first four features are derived from
Iterative and Adaptive Inverse Filtering (IAIF) method [40]. A
brief description of the features is given below.

Normalized Amplitude Quotient (NAQ) [29]: It is the
ratio of the AC-amplitude of the glottal flow (noted fAC ) and
the negative peak amplitude dmin of the glottal flow derivative,
normalized with the pitch period.
H1-H2: It is the difference between the amplitudes of the first
& second harmonics of the glottal flow spectrum [22].
Quasi-open quotient (QOQ) [11, 22]: It is calculated by de-
tecting the peak in the glottal flow and finding the time points
previous to and following that descend below 50% of the peak
amplitude. The duration between the time locations gives as
a quasi-open phase and divided by the local pitch period gives
QOQ. This parameter is closely related to the open quotient.
Maximum dispersion quotient (MDQ) [32]: This parameter
measures the dispersion in the LP residual around the GCI.
Parabolic spectral parameter (PSP) [28]: PSP is a frequency
domain feature developed for the quantification of the glottal
flow waveform.
Mel-frequency cepstral coefficients (MFCCs): In this study,
13 mel-frequency cepstral coefficients are measured using 25
ms Hamming windowed frames, with a 5 ms shift. From static
(S) coefficients, delta (V) and double-delta (A) coefficients were
computed, which makes total of 39 dimension.

5. Classification Experiments and
Discussion on Results

The classification experiments are carried out using support
vector machines (SVMs) utilizing a radial basis function (RBF)
kernel [41]. Experiments are conducted using 10-fold cross-
validation, where the dataset is randomly partitioned into 10
equal sets. One fold is held out to be used for testing with the
remaining dataset for training. This process is repeated for each
of the 10-folds (classification accuracies are saved in each fold).
The experiments are carried out for 6 different feature vectors:

• VQ = [NAQ,QOQ, H1-H2, PSP and MDQ]

• MFCC

• Excitation = [SoE, EoE, Loudness, ZFF energy]

• ZTWCC

• Excitation+ZTWCC

• VQ+MFCC+Excitation+ZTWCC

The classification results from the 10-fold cross-validation
experiments are shown in terms of mean and standard devia-
tion of the classification accuracies in Table 1. From table,
it can be seen that including all parameters (i.e., VQ features,
MFCCs, excitation features, and ZTWCC) gives the highest
average classification accuracy (75.31%). It can be also be
observed that phonation classification accuracy with ZTWCC

Table 1: Mean and standard deviation of classification accu-
racy scores (in %) after 10-fold cross validation with different
input feature vectors.

Features Mean accuracy[%] Standard deviation[%]
VQ 64.21 4.97
MFCC 68.52 5.14
Excitation 61.26 5.84
ZTWCC 69.38 4.53
Excitation+ZTWCC 72.37 4.18
VQ+MFCC+Excitation+ZTWCC 75.31 4.11

Table 2: Confusion matrix (in %) with 10-fold
cross validation after combining all features (i.e.,
VQ+MFCC+Excitation+ZTWCC).

Breathy [%] Modal [%] Tense [%]
Breathy 84.61 13.77 1.62
Modal 13.21 66.66 20.13
Tense 4.06 22.14 73.80

gives the highest performance compared to VQ features and
MFCCs. Even though excitation features alone are not showing
significant classification accuracy, by combining with ZTWCC
gives the significant improvement in accuracy. This indicates
excitation features and ZTWCC are providing complimentary
information.

The confusion matrix displayed in Table 2 shows that there
is a significant accuracy for breathy voice and confusion be-
tween modal and tense voice when all features are used for
classification. The trend in the accuracies among the phonation
classes is in conformity with the studies [24,32]. The classifica-
tion accuracy can be further improved by including other voice
quality parameters and by exploring features that can capture
the effect of excitation on the system characteristics. Also, to
ensure the quality of the intended phonation type and to resolve
the potential ambiguity, there is a need for perceptual screening
of the data.

6. Summary and conclusion

In this paper, we present new features, zero-time window-
ing cepstral coefficients (ZTWCC) for discriminating breathy
to tense voice. Along with ZTWCC, we also derived exci-
tation source features for the analysis and classification. A
comprehensive evaluation reveals that the proposed features
provides better differentiation of the phonation classes. The
existing voice quality features (except MDQ) are calculated
from the glottal source waveform estimated by inverse filter-
ing. However, automatic glottal inverse filtering for continu-
ous speech can be problematic for high pitched voices. Pro-
posed ZTWCC and excitation source features do not assume
source-filter model of speech production and do not use glottal
inverse filtering. This suggests that, the proposed features are
more suitable for automatic analysis of continuous speech and
high pitched voices [42]. Results from the classification exper-
iments clearly demonstrate that ZTWCC and excitation source
features provide further information than that is present in ex-
isting voice quality parameters and MFCCs, for discriminating
phonation types. Furthermore, experiments showed that on its
own ZTWCC can be used to achieve a lower classification error
than other individual features.
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