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Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive
neurodegenerative disease of the motor system that leads to the
impairment of speech and swallowing functions. The lack of a
biomarker typically causes a diagnostic delay. To advance the
current diagnostic process, we explored the feasibility of au-
tomatic detection of patients with ALS at an early stage from
highly intelligible speech. A speech dataset was collected from
thirteen newly diagnosed patients with ALS and thirteen age-
and gender-matched healthy controls. Convolutional Neural
Networks (CNNs), including time-domain CNN and frequency-
domain CNN, were used to classify the intelligible speech pro-
duced by patients with ALS and those by healthy individuals.
Experimental results indicated both time- and frequency-CNN
outperformed standard neural network. The best sample-level
sensitivity and specificity were obtained by time-CNN (71.6%
and 80.9%, respectively). When multiple samples were used
to vote to estimate a person-level performance, the best result
was obtained by frequency-CNN (76.9% sensitivity and 92.3%
specificity). Results demonstrated the possibility of early detec-
tion of ALS from intelligible speech signals.
Index Terms: amyotrophic lateral sclerosis, human-computer
interaction, computational paralinguistics

1. Introduction
Amyotrophic lateral sclerosis (ALS), also known as Lou
Gehrig’s disease, is a fatal and progressive motor neuron dis-
ease [1]. There is no definite diagnostic procedure and no cure
for ALS. The current diagnosis of ALS is provisional, based pri-
marily on clinical observations of upper and lower motor neuron
damage in the absence of other causes [2]. Due to the lack of
clinicopathologic markers of ALS, patients are often misdiag-
nosed (up to 45% of the time) or delayed for up to 12 months
[3]. One unfortunate consequence of this delay is that by the
time of diagnosis, a patient’s motor neurons may have been af-
fected already. ALS affects patient’s bulbar system and then
causes speech and swallowing problems [4]. The Amyotrophic
Lateral Sclerosis Functional Rating Scale revised (ALSFRS-r),
a self-report from patients/suspects, is currently used to predict
ALS progression by analyzing the ability to complete functional
activities in daily living [5]. The diagnosis and treatment of

ALS will be significantly strengthened when objective, sensi-
tive markers for the disease can be identified [6].

Recent studies indicated speech production decline is
among the earliest indicators of bulbar motor involvement due
to ALS [7, 8]. Dysarthria is a speech disorder resulting from
deficits in musculature control of the articulators. Current com-
mon clinical measures for speech performance are subjective
and non-deterministic at an early stage [8]. Perceptual analysis
of dysarthric speech such as speech intelligibility (the percent-
age of words understood by listeners) and speaking rate (words
per minute, WPM) are widely used methods to determine dis-
ease severity. However, symptoms of dysarthria may not be
perceptually detectable until 80% of the motor neurons are loss
[9]. Thus, perception-based approaches may not be able to dis-
tinguish speech produced by patients with early diagnosed ALS
and healthy controls, because both of their speech are highly
intelligible.

The automatic detection of other neurological diseases from
speech signals recently has shown promising results for depres-
sion [10, 11, 12], traumatic brain injury [13], and Parkinson’s
disease [14, 15, 16, 17]. Various types of acoustic features,
such as formant centralization ratio, vowel space area, intona-
tion, and prosody [18, 19] have been used for the detection of
neurological diseases. One advantage of using speech signals is
that speech samples can be easily obtained from subjects (e.g.,
using smartphone application) without the logistical difficulty
in a clinical environment.

Our previous preliminary study demonstrated that speech
may be a sensitive measure to automatically detect ALS at early
stage and monitor disease progression [6, 20]. Our previous
work on early detection of ALS [6], however, used a dataset that
contains the non-age-matched healthy controls, which may in-
troduce a bias in the classification performance. In comparison
to younger speakers, elderly individuals may have slower and
breathy voice characteristics. In addition, both speakers with
ALS and senior-aged individuals show slow speech and breathy
voice. Thus, further work with an age- and gender-matched
dataset is needed to verify the previous findings.

In this study, we improved our previous design [6] by us-
ing a larger dataset with age- and gender-matched healthy con-
trols. Similar to our previous work, the current work includes
data from early-diagnosed patients with ALS who still produce
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Table 1: Patients information statistics

Subject Age Speaking Rate Speech Intell.
A01 55 235.7 100
A02 52 164.2 99
A03 61 209.5 96.4
A04 54 192.4 99.1
A05 42 167.5 97.3
A06 58 180.8 100
A07 60 167.6 95.5
A08 56 189.2 100
A09 42 222.2 98.2
A10 54 156 100
A11 48 155.6 99
A12 61 161.4 97.3
A13 48 217.8 100

Mean 53.9 186.1 98.6
Std 6.4 27.4 1.6

Table 2: Healthy controls information statistics

Statistics Age Speaking Rate Speech Intell.
Mean 63.5 189.8 99.86
Std 8.7 16.5 0.3

highly intelligible speech, although some of them have shown
limb symptoms.

In addition to predefined, hand-crafted features and artifi-
cial neural network (ANN) that were used in our previous work
[6], we applied convolutional neural network (CNN)-based rep-
resentation learning in the current work. Representation learn-
ing can learn useful features from low-level signals and it has
shown effectiveness in various classification applications, out-
performing traditional hand-crafted features [21, 22]. In partic-
ular, CNNs are one of the widely used representation learning
methods due to the ability of extracting local features through
convolution and pooling operations [23]. With time-frequency
signals, there are various types of CNNs such as time-domain
CNN and frequency-domain CNN depending on the convolu-
tion and pooling operations along the time and frequency axes,
respectively. CNNs can extract robust features across tempo-
ral and spectral domains, which has shown its effects in other
audio signals based studies [24, 25, 26]. Thus, the use of
CNN-based representation learning may have a benefit in ex-
tracting useful information for ALS detection. In this paper,
we tested CNN-based representation learning approaches on
low-level filterbank energies with time-domain and frequency-
domain CNNs to detect early-stage ALS disease using intelligi-
ble speech samples. The performance of CNNs were compared
with hand-crafted features and ANN, the previous approach
[6]. A leave-one-paired-subject-out cross validation strategy
was used to evaluate the performance of these classification ap-
proaches.

2. Dataset
The speech data set used in this study was collected from thir-
teen early-diagnosed patients with ALS (9 females and 4 males)
and thirteen healthy age-matched speakers (8 females and 5
males). The patients with ALS were diagnosed within 6-12
months prior to data collection. The age interval of the patients
is from 42 to 61 (mean = 53.9, SD = 6.4). The age range of
the healthy controls is from 47 to 73 (mean = 63.5, SD = 8.6).
The patient and healthy control information is summarized in

40 dimensional filter bank Conv_1 @
Max pooling

Fully 
connected

Soft-max layer

Conv_nth

Figure 1: Example of the time-CNN architecture.

Table 1 and 2. As previously mentioned, speech intelligibil-
ity is a perceptual measurement of speech clarity. Speaking
rate is the amount of words produced per minute. A certified
speech-language pathologist evaluated the speech intelligibility
and speaking rate of the participants using the Sentence Intel-
ligibility Test (SIT) software [27]. As shown in Table 1, both
individuals with ALS and healthy controls had high speech in-
telligibility levels and similar speaking rates.

At each data collection session, acoustic data were collected
during the production of 20 sentences such as I need some as-
sistance and call me back when you can. Each sentence was
produced 4 times for a total of 80 productions. The stimuli were
selected because they are often used in alternative and augmen-
tative communication (AAC) devices [6]. The built-in micro-
phone in the NDI Wave system [28] was used to collect acous-
tic data. Articulatory movement data (i.e., tongue and lips) were
also collected for future studies. All the speech data had a 16
kHz sampling rate. A total of 2,080 valid speech samples were
collected, where each sample is an acoustic sample of a spoken
short phrase.

3. Method
We performed ALS classification from speech samples using
the following three classification methods: 1) ANN with sta-
tistical (hand-crafted) features as in our previous work [6], 2)
time-domain CNN, and 3) frequency-domain CNN based rep-
resentation learning approaches.

3.1. Baseline Approach: ANN with Statistical Features

Our previous work [6] used statistical features extracted by the
publicly available tool, openSMILE. We set up our previous
work as a baseline and call this approach as ANN with statis-
tical features. In the baseline approach, openSMILE [29] was
used to extract hand-crafted features that are statistical variation
of the widely used acoustic features, such as the mean and stan-
dard deviation of mel-frequency cepstral coefficients (MFCCs)
and the quartile of the fundamental frequency contour, from the
speech samples. Total 7,755 acoustic features were extracted
from each speech sample and fed into the ANN-based classi-
fication model. The ANN has the 2 dimensional softmax out-
put layer: ALS and healthy. The test samples were classified
by a maximum a posteriori probability obtained from ANN.
Although the network implementation was based on the ANN
framework in TensorFlow [30], it had only one hidden layer.
Thus, we still call the model ANN throughout this paper.

3.2. CNN with Filterbank Energies

Representation learning is a feature learning method in which
the model learns useful feature representation from low-level
signals without hand-crafted feature extraction. For example,
MFCC, one of the widely used hand-crafted features in speech
recognition, includes de-correlation of filterbank energies in
spectral domain. The de-correlation may lead to loss of use-
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ful information to discriminate ALS and healthy from speech
signals.

Convolutional neural networks (CNNs) consist of convolu-
tion and pooling layers. The convolution operation is the dot
product between the small region of the input and the localized
weights. The localized weights are shared by convolving entire
input. As an output of the convolution, learned features are ob-
tained in the form of the multi-dimensional feature maps. Each
feature map represents localized information of the input. Then,
max-pooling operation is applied to the features to reduce the
dimension by selecting the maximum value out of all the fea-
tures of the small region. Thus, CNN has benefit of extracting
useful small variation-insensitive localized features from low-
level signals.

In this work, we used CNN-based representation learning
approaches. We used 40 low-level filterbank energies with 16
ms frame and its first derivative (delta) and second derivative
(delta-delta) as an input to the model. The filterbank, delta, and
delta-delta are concatenated to form 3D channel shape and fed
into the model. Figure 1 illustrates an example of the CNN
architecture with n layers. Depending on the direction of con-
volution, we considered two types of CNNs, time-domain CNN
and frequency-domain CNN.

3.2.1. Time-CNN

Time-domain convolution applies convolution and pooling op-
erations over time, and therefore, it can extract modulating char-
acteristics while keeping invariance to a small shift in time [24].
Three layers of CNNs were used with different filter sizes of
1 × 6, 1 × 5, and 1 × 3 for the corresponding layers, respec-
tively. Each layer was sub-sampled by non-overlapping max
pooling operation with 1× 2, 1× 3, and 1× 3 with 64 feature
maps, respectively.

3.2.2. Frequency-CNN

Frequency-domain convolution applies convolution and pool-
ing operations along frequency, and therefore, it can represent
useful spectral features while reducing frequency variance [24].
Three layers of CNNs were used with different filter sizes of
7 × 1, 5 × 1, and 3 × 1 for the corresponding layers, respec-
tively. Each layer was sub-sampled by non-overlapping max
pooling operation with 2× 1, 4× 1, and 4× 1 with 64 feature
maps, respectively.

3.3. Experimental Design

The ANN to train statistical features had 1 hidden layers with
3072 hidden neurons and binary output softmax layer. We
tested from 1 to 4 layers with 256, 512, 1024, 2048, 3072, 4096
neurons at each layer and obtained the best result with 1 hidden
layer with 3072 hidden neurons. Each hidden neuron was acti-
vated by the rectified linear unit (ReLU). The Adam optimizer
[31] was employed for training with backpropagation.

For each type of CNNs, we tested 4 to 8 filter sizes in the
first layer and reduced size by one to three in the following lay-
ers. Feature representation at the last CNN layer is flattened and
fed into a fully-connected layer with 256 hidden neurons .

As mentioned previously, a total of 2,080 acoustic samples
were collected during the data collection, where each partici-
pant produced 80 acoustic samples. We paired 80 samples from
one patient and 80 samples from one healthy control as a test
set and performed leave-one-subject-pair-out cross validation
to evaluate the performance of the ANN + statistical features
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Figure 2: Performance of ALS detection of the three ap-
proaches: ANN with statistical features, time-CNN, and
frequency-CNN.

and CNN-based representation learning method in a speaker-
independent way. In the CNN-based representation learning,
we used fragmented context windows as single input within an
utterance, which will produce multiple maximum a posteriori
at the output layer of the model. In the inference step of the
CNN based method, we determined predicted label of single
utterance sample by averaging the obtained probabilities of all
context windows within one utterance.

Accuracy, sensitivity, and specificity were the major per-
formance indicators in this experiment. Accuracy is the overall
probability of correctly classified samples over the total number
of samples. Sensitivity is the probability of correctly predicted
acoustic samples as a patient given all patient samples. Speci-
ficity is the probability of correctly classified healthy controls
samples given all healthy control samples. Accuracy, sensitiv-
ity, and specificity are calculated as follow:

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(1)

Sensitivity =
TP

(TP + FN)
(2)

Specificity =
TN

(TN + FP )
(3)

where TP is true positive, TN is true negative, FP is false pos-
itive, and FN is false negative. Here, positive means a predic-
tion that the speech sample is produced by a speaker with ALS;
negative means a prediction that the speech sample is produced
by a healthy control.

4. Result and Discussion
Figure 2 shows the accuracy, sensitivity, and specificity of the
ALS classification using the three approaches: ANN with sta-
tistical features, time-CNN and frequency-CNN. Also, a two-
tailed t-test was performed to measure if there were statistical
significance between the performance of the three approaches
and random guess. ANN with statistical features, time-CNN,
and frequency-CNN achieved accuracies of 74.6% (p < 0.01),
76.2% (p < 0.001), and 73.0% (p < 0.001), respectively. The
three approaches achieved sensitivity of 68.9% (p = 0.07),
71.5% (p < 0.05), and 70.5% (p < 0.05), respectively. The
three approaches achieved specificity of 80.2% (p < 0.001),
80.9% (p < 0.00001), and 75.6% (p < 0.0001), respectively.

All of the three measures by the three approaches were sig-
nificantly above chance level (50%) (p < 0.05), except the
sensitivity predicted by ANN. All the measures predicted using
time-CNN and frequency-CNN were above chance level. These
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Table 3: Individual subject’s performance in cross validations
(CV).

ANN+statfeat Freq-CNN Time-CNN
CV Sens Spec Sens Spec Sens Spec

A01-H01 100 97.5 96.3 82.5 100 95
A02-H02 100 66.3 82.5 78.8 82.5 77.5
A03-H03 100 73.8 86.3 100 96.3 96.3
A04-H04 42.5 77.5 23.8 68.8 22.5 57.5
A05-H05 92.5 100 86.3 81.3 95 97.5
A06-H06 100 98.8 88.8 77.5 98.8 78.8
A07-H07 100 87.5 100 72.5 100 72.5
A08-H08 23.8 92.5 63.8 87.5 77.5 91.3
A09-H09 30 93.8 86.3 76.3 75 70
A10-H10 8.7 48.8 25 38.8 20 81.3
A11-H11 58.7 18.8 57.5 62.5 41.3 67.5
A12-H12 48.8 96.2 45 85 47.5 100
A13-H13 91.3 91.3 75 71.3 73.8 66.3

Mean 68.9 80.2 70.5 75.6 71.6 80.9
Std 34.5 23.8 25.7 14.5 29.2 13.9

results showed the feasibility to automatically detect ALS from
healthy controls using speech signals, which further verified the
finding of our previous work [6].

In addition, our result showed that both time-CNN and
frequency-CNN outperformed both ANN with statistical fea-
tures. The sensitivity of the time-CNN is 71.6%, whereas
the sensitivity of the ANN with statistical features and the
frequency-CNN are 68.9% and 70.5%, respectively. The speci-
ficity of time-CNN, frequency-CNN, and ANN are 80.9%,
75.6%, and 80.2%, respectively.

Table 3 gives the detailed classification results for each
subject-pair in each cross validation using the three approaches.
The mean and standard deviation of the performance of the val-
idations were given in the lower part of the table. Despite the
promising results obtained, a large standard deviation across
each subject-pair may suggest a person-level classification that
is lower than expected.

In practice, diagnosis for each ALS suspect/candidate can
be determined by a vote of the detection results of multiple
speech samples. For example, each ALS suspect can be asked
to produce five different speech (phrase) samples. Each sample
will be fed into one classifier that makes a prediction if a suspect
is with ALS or not. If more than half (three or more) samples
indicate the suspect is with ALS, then the suspect is predicted
as ALS; otherwise, the suspect is classified as healthy.

To estimate the person-level classification, we used the
probability (p in Eq. 4) of detecting ALS from each acous-
tic sample that follows our best sample-level performance by
time-CNN (with 76.2% accuracy, 71.5% sensitivity, and 80.9%
specificity). The suspect will produce total N different acoustic
samples and the diagnosis will be determined by the probability
of k correctly classified samples or greater than integer k, where
k =

⌊
N
2

⌋
+1. The probability can be calculated by cumulative

binomial distribution [32] as:

P (X ≥ k) = 1−
k−1∑

i=0

(
n

i

)
· pi(1− p)n−i (4)

Figure 3 shows the results of the estimated person-level
classification estimated using Eq. 4. and the actual test re-
sults based on sample voting. With the assumption of bino-
mial distribution of the sample-level classification, when a sus-
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Figure 3: Person-level ALS detection performance.

pect provides five samples, the accuracy, sensitivity, and speci-
ficity could be up to 90.8%, 85.6%, and 94.9%, respectively.
When a suspect provides 15 samples, the accuracy, sensitivity,
and specificity could be up to 98.7%, 96.3%, and 99.7%, re-
spectively. However, the best actual person-level performances
are 84.6% accuracy, 76.9% sensitivity, and 92.3% sensitivity,
when we took all 80 samples for a voting using Frequency-
CNN. Time-CNN obtained a 80.8% accuracy, 69.3% sensitivity,
and 92.3% specificity. The finding indicated that sample-level
performance may not match a binomial distribution (possibly
due to the small number of subjects).

Limitation. Despite the promising results, a large variation
of person-level detection was also observed. A dataset from a
larger number of subjects (both ALS and healthy subjects) is
needed to verify these findings. In addition, in this work, we
employed the data only from ALS patients and healthy controls,
without including data from other diseases. Because other dis-
eases also cause dysarthric speech, there could be a possibility
that our model has been trained to discriminate between poten-
tial dysarthria from non-dysarthria (although both are percep-
tionally intelligible speech). Verification of this needs a dataset
with speech samples from patients with other diseases (e.g.,
Parkinson’s disease[16]) and age-matched healthy controls.

5. Conclusions and Future Work
In this project, we explored the feasibility of automatic early
detection of ALS from highly intelligible speech from age-
matched healthy controls using CNNs. Results showed that
the CNNs outperformed traditional approaches (e.g., standard
neural network) with statistical features measured by sensitiv-
ity and specificity. Time-CNN outperformed frequency-CNN at
sample-level prediction, while frequency-CNN slightly outper-
formed time-CNN at person-level prediction.

Future work will include other dysarthric-related diseases
to exclude a potential bias caused by dysarthria and focus on
detection of ALS disease in the absence of other factors. An-
other future direction is to add articulatory information on top of
the acoustic information to advance the detection. Other deep
learning models (e.g., recurrent neural networks) will be also
investigated.
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