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Abstract

This paper focuses on the problem of estimating fundamental
frequency from singing voice. Estimation of fundamental fre-
quency is a well studied topic in the speech research commu-
nity. From the recent studies on fundamental frequency esti-
mation from singing voice with state-of-art methods proposed
for speech, there exists a significant gap in accuracy for singing
voice. This is mainly because of the wider and rapid variations
in pitch in singing voice compared to that in speech. To over-
come this, in this paper we propose a method to derive the fun-
damental frequency from singing voice by exploiting the har-
monics of impulse-like excitation in sequence of glottal cycles.
The proposed method is compared with the eight state-of-art
methods such as YIN, SWIPE, YAAPT, RAPT, SRH, SFF CEP,
PEFAC and SHRP on the LYRICS singing database. From the
experimental results, it is observed that the accuracy of funda-
mental frequency by the proposed method is better than many
state-of-art methods in various singing categories and laryngeal
mechanisms.
Index Terms: Fundamental frequency, Singing voice, Excita-
tion source, Glottal closure instants.

1. Introduction
Fundamental frequency (F0) is defined as the inverse of the
pitch period caused by the periodic vibration of the vocal folds
in voiced speech/singing. F0 is of particular interest in several
speech/singing voice processing applications such as analysis,
modification/conversion, recognition and synthesis. Although
F0 estimation is a well studied topic in the area of speech pro-
cessing, this is not up to the extent in the case of singing voice.
Even though both speech and singing are produced by the same
vocal apparatus, transporting the speech processing approaches
to singing may not be straight forward. This is mainly be-
cause of the significant coupling between source and system in
singing compared to speech, which is neglected mostly. Also,
rapid and wider variations in pitch, greater dynamic range, pro-
longed voice sounds make the singing voice processing tech-
niques difficult compared to speech. Apart from these, the di-
versity of singing techniques, categories makes difficult to con-
sider the singing voice as a whole and systematic approach. Be-
cause of these factors, speech and singing research fields have
evolved side by side by sharing several approaches. In stud-
ies [1–3], attempts were made to see the effectiveness of various
speech processing techniques such as glottal closure instants
(GCIs), F0 and vocoding techniques for singing voice. From
these studies, it was found that the usage of speech processing
techniques may not be guaranteed for singing voice. Hence,
there is a need for developing sophisticated methods for pro-
cessing singing voice.

Methods of estimating F0 can be classified according to the
features they rely on. Based on this, existing methods can be
grouped into following three categories.

1. Methods using time-domain properties.
2. Methods using frequency-domain properties.
3. Methods using time-frequency domain properties.

The periodicity information can also be processed in a deter-
ministic way or using a statistical approach.

The time domain methods exploit the periodicity informa-
tion present in the speech signal or approximated excitation sig-
nal (such as LP residual) after decomposing the signal into ex-
citation and vocal tract system [4]. In these methods, the lo-
cation of the peaks in the autocorrelation or cross correlation
sequence is used for estimation of pitch period and there by
F0 [5]. For example, PRAAT [6] uses the local maxima in auto-
correlation or cross correlation computed on the speech signal.
Similarly methods such as RAPT [7] and YAAPT [8] estimate
pitch by extracting local maxima of the normalized cross cor-
relation function of the speech signal. Several modifications on
the autocorrelation based methods were carried out in YIN [9]
with post processing to prevent errors.

Instead of speech signal, some methods use excitation sig-
nal to estimate fundamental frequency. In SIFT [10], funda-
mental frequency is estimated using autocorrelation function of
excitation signal where, excitation signal is obtained by apply-
ing inverse filtering. Cepstral methods [11,12] separates the ex-
citation and vocal tract contributions in the cepstral domain us-
ing homomorphic transformation. In this, pitch period is com-
puted by measuring the interval to the first dominant peak in the
cepstrum. In TEMPO method [13], fundamental frequency is
estimated by evaluating the fundamentalness of speech which
achieves a maximum value when the AM & FM modulation
magnitudes are minimized. Also a few attempts were made for
the estimation of periodicity [4] using impulse-like nature of
excitation i.e., epochs/GCIs. The interval between consecutive
GCIs refers to the pitch period and inverse of it refers to funda-
mental frequency.

Frequency domain methods use the presence of harmonic
peaks in the spectrum. In this category, methods are proposed
based on the idea of using summation of harmonics in the spec-
trum [14–17]. In [14], F0 is estimated using subharmonic sum-
mation. Instead of using spectrum of speech, in [15], authors
used spectrum of LP residual signal so as to reduce the ef-
fect of vocal tract system in the resultant spectrum. Methods
that use the harmonics of LP residual signal, rely on source fil-
ter decomposition. It is known that source filter decomposi-
tion through LP analysis fails drastically, for the voices such as
singing voice, due to significant coupling between source and
system.
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Some methods combine various techniques such as com-
bination of harmonic ratios and cepstral analyses [18, 19]. In
methods that use time-frequency domain, the speech signal is
decomposed into multiple frequency bands and then time do-
main methods such as autocorrelation are applied on each of the
sub bands [20]. Also, different weighting schemes on sub-bands
are proposed for robust F0 estimation [21]. Some methods use
statistical or data-driven approaches to learn the degradation ef-
fects on the strength of location of the harmonics in speech
using models such as HMM, DNN and CNN [22–27]. These
data-driven approaches yield robust pitch estimation when the
test data has characteristics that are similar to the data used in
training.

Most of the existing techniques assume periodicity in the
successive glottal cycles which is limited to generic human
pitch range 60− 400Hz. However due to rapid and wider vari-
ations in pitch of singing voice, there is a need for methods that
can handle these variations.

In summary, factors that affect the performance of the F0

estimation methods are:

• Significant source filter coupling
• Effect of vocal tract resonances
• Rapid and wider variations in pitch
• Usage of thresholds such as setting range of F0

In this paper, we propose a method for fundamental fre-
quency estimation for singing voice, based on the harmonics of
impulse-like excitation source, derived from modified zero fre-
quency filtering (ZFF) method. The modified ZFF gives the
impulse-like sequence of excitation with their corresponding
strengths. The method can handle rapid and wider variations
in pitch. The organization of the paper is as follows: Section 2
gives a method of extraction of impulse-like excitation sequence
from singing voice. Section 3 presents the proposed method of
estimation of pitch using the harmonics of impulse-like excita-
tion. The experimental protocol is described in Section 4. The
proposed method is compared with several standard methods of
pitch estimation in Section 5. Finally Section 6 gives a sum-
mary.

2. Motivation for the study
The following two ideas motivated for the present study. One
is the method of accurate estimation of glottal closure instants
(GCIs) from singing voice which can handle rapid variations
in pitch [28, 29]. Other is the summation of harmonics in the
spectrum [15]. In this study, we are exploiting these two ideas
for the estimation of pitch in singing voice. The summation of
harmonics method uses the property that the periodicity in time
domain is reflected as harmonics in frequency domain. Obtain-
ing periodicity in time domain is a harder task as the vocal tract
resonance influences the signal, especially in the presence of
significant source filter coupling. To overcome this problem,
we are proposing to use impulse-like sequence representation
of excitation source derived directly from the speech signal.

3. Extraction of Impulse-like Excitation
Source

For extracting the impulse-like excitation characteristics from
singing voice, we used modified zero frequency filtering
method. In this method, the differenced speech signal is passed
through a resonator (given in Eqn. (1)), and the trend in the

resonator output (y0[n]) is removed by using a moving average
filter (given in Eqn. (2)) [28, 30].

y0[n] = −
2∑

k=1

aky0[n− k] + x[n], (1)

where a1 = −2 and a2 = 1.

y[n] = y0[n]− 1

2N + 1

N∑

m=−N

y0[n+m], (2)

where 2N + 1 corresponds to the number of samples used for
computing the trend. This process is repeated twice i.e., pass-
ing the resultant signal (y[n]) through a resonator and remov-
ing the trend. It is to be noted that, this repetition operation
is different from passing the signal through three resonators
and removing the trend. The resulting signal oscillates accord-
ing to variation of local pitch period [28], and is referred to as
modified ZFF signal. The instants of negative-to-positive zero
crossings (NPZCs) correspond to the major significant excita-
tions called as epochs/GCIs. Let the epochs be denoted by
E = {e1, e2, ..., eM}, where M is the number of epochs. A
measure of the strength of impulse-like excitation around the
GCI and is given by

e[l] = |y[el + 1]− y[el − 1]|. l = 1, 2, ...,M. (3)

For illustration, Fig. 1 (a) shows the segment of a baritone
singing voice, (b) is the modified zero-frequency filtered signal,
(c) is the strength of impulse-like excitation sequence, and (d)
is the differenced electroglottographic (EGG) signal . It can be
seen that, there is a close agreement between the locations of
the strong negative peaks of the differenced EGG signal and the
instants of NPZCs derived from the modified ZFF signal.
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Figure 1: (a) A segment of baritone singing voice. (b) Modified
zero-frequency filtered signal along with the epoch locations.
(c) Strength of impulse-like excitation sequence, and (d) Differ-
enced EGG signal for reference.

The interval between successive GCIs gives the pitch pe-
riod. However, due to is a shift in the estimated GCIs or due to
spurious GCIs, the estimation of pitch is effected. To overcome
this, we use the harmonics of strength of impulse-like excitation
sequence.
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4. Fundamental Frequency Estimation
based on Harmonics of Impulse-like

Excitation Source
The method relies on the analysis of the strength of impulse-
like excitation sequence. As the strength of impulse-like exci-
tation at GCI has the higher value, we are computing its spec-
trogram to highlight the periodicity information present in it.
Similar to the methods proposed in [15], the present method
also focuses on the harmonicity information. But it is to be
noted that, this method does not use information of source fil-
ter decomposition so as to obtain the periodicity information in
the excitation signal. Instead, it uses one important characteris-
tic of the excitation signal namely, strength of the impulse-like
excitation. In this study, the harmonic criterion is similar to
that proposed in [15]. From the spectrogram of the strength of
impulse-like excitation sequence (Fig. 2), it can be seen that, for
the voiced segments of speech, peaks are present at harmonics
of F0. The strength of impulse-like excitation sequence is de-
noted as e(t), which is e[l] at epochs and at other time instants
as zero. The amplitude spectrum of e(t) is computed for each
hamming windowed frame, covering several glottal cycles and
is denoted as E(f). From the spectrum E(f), in the frequency
range [F0min, F0max], the summation of impulse character-
istics (SIH) is computed as

SIH(f) = E(f) +

Nh∑

k=2

[E(k.f)− E((k − 1/2).f)]. (4)

In equation (4), the term E(k.f) in the summation, takes
the contributions of the first Nh harmonics into the account. It
is expected that this expression reaches a maximum value for
f = F0. However, this is also true for the harmonics present
in the range [F0min, F0max]. To overcome this effect, the
subtraction of E((k − 1/2).f) allows the significant reduction
of relative importance of maximum of SIH at even harmonics.
The estimated F0 value for a given frame is thus the sequence
that maximizes SIH(f). Figure 2 illustrates the spectrogram
of impulse-like excitation sequence for a segment of baritone
singing voice shown in Fig. 3(a).

In this study, we use Nh = 5, window length of 50ms with
shift of 10 ms and F0 range is set to 60 − 1500Hz to account
for wider variations in pitch. As there exists fluctuations in F0,
especially at the transition regions, a 5 point median filtering is
carried out.

1 2 3 4 5 6

Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

F
re

q
u

en
cy

 (
H

z)

Figure 2: Spectrogram for the strength of impulse-like excita-
tion sequence for a segment of baritone singing voice shown in
Fig. 3(a).

Fig. 3 illustrates the derived F0 contours in comparison
with ground truth for baritone singing voice shown in Fig. 3(a).
The ground truth of F0 for this case is shown in Fig. 3(b). The
F0 contour derived by the proposed method (SIH) is shown in
Fig. 3(c). The F0 contour in Fig. 3(c) matches well with the
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Figure 3: F0 contour comparison. (a) A segment of baritone
singing voice. (b) Ground truth F0 contour. (c) SIH F0 contour.
(d) SRH F0 contour. (e) SWIPE F0 contour, and (f) YIN F0

contour.

Table 1: Averaged performance comparison of various F0 es-
timation methods for total database which consists of different
types of singing categories and laryngeal mechanisms.

Method GPE SPD MPD
SFF CEP 6.04 6.95 12.44
SRH 21.31 2.17 2.17
SIH 1.72 2.77 2.72
SWIPE 1.78 2.17 2.25
YAAPT 25.97 4.19 5.67
YIN 5.95 1.2 0.94
RAPT 7.56 2.16 2.03
PEFAC 27.64 4.4 3.61
SHRP 23.26 1.97 1.62

one in Fig. 3(b). Figs. 3(d), 3(e) and 3(f) show the F0 contours
derived using the SRH, SWIPE and YIN methods, respectively.

5. Experimental Protocol
This section describes the singing database used, methods used
for comparison and the evaluation metrics for pitch estimation.

5.1. Database used and ground truth

In this study, we use LYRICS singing database which consists
of 13 trained singers [3, 31]. The database comprises of 7 bass-
baritones (B1 to B7), 3 sopranos (S1 to S3), and 3 countertenors
(CT1 to CT3). The recordings were carried out in a soundproof
room. Acoustic and electroglottographic (EGG) signals were
recorded simultaneously and the acoustic signal was recorded at
a distance of 50 cm from the singer’s mouth. The singing tasks
comprises of ascending and descending glissandos, crescendos-
decrescendos and arpeggios and sustained vowels. Depending
on possibility, singers sing in laryngeal mechanisms M1, M2
and Mx (laryngeal mechanism smoothly switches from one to
the other).

In order to objectively assess the performance of pitch
trackers, a ground truth is required. In this study, we use pitch
contours created by the authors in [3, 31], which are shown to
be reliable. The authors derived pitch from EGG signal and
then applied a manual verification process by visually compar-
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Table 2: Performance comparison of various F0 estimation
methods for different types of singing categories (baritone,
countertenor and soprano).

Singing Category Method GPE SPD MPD

Baritone

SFF CEP 9.55 3.74 4.94
SRH 29.2 1.54 1.51
SIH 2.72 2.19 2.11
SWIPE 3.21 1.64 1.62
YAAPT 7.17 3.36 4.91
YIN 9.02 0.88 0.6
RAPT 5.6 1.65 1.54
PEFAC 7.91 3.89 3.76
SHRP 16.04 1.37 1.2

Countertenor

SFF CEP 3.22 8.07 13.34
SRH 15.85 2.73 2.77
SIH 0.92 3.3 3.3
SWIPE 0.08 2.42 2.68
YAAPT 27.08 5.78 7.9
YIN 3.51 1.38 1.14
RAPT 5.57 2.38 2.44
PEFAC 37.32 5.39 4.23
SHRP 18.47 2.5 2.28

Soprano

SFF CEP 0.26 13.85 30.48
SRH 7.38 3.17 3.19
SIH 0.09 3.63 3.63
SWIPE 0.05 3.23 3.35
YAAPT 72.49 4.55 5.12
YIN 0.86 1.82 1.57
RAPT 14.76 3.2 2.79
PEFAC 66.96 4.59 2.55
SHRP 46.97 2.91 1.95

ing each contour to the spectrogram of the EGG signal.

5.2. Evaluation metrics

It is to be noted that the proposed method is unsupervised in
nature and hence no training is involved. For assessing the per-
formance, the accuracy of the derived F0 is measured in terms
of 3 parameters [4], namely, gross pitch error (GPE), standard
pitch deviation (SPD) and mean pitch deviation (MPD). GPE is
the percentage of voiced frames of estimated F0 deviating be-
yond 20% from the ground truth F0 values. SPD and MPD are
the standard deviation and the mean of the absolute difference
between estimated and ground truth F0 values. For a better per-
formance method, all the values should be low.

5.3. Methods for comparison

Performance of the proposed method is compared with eight
standard methods. The eight standard methods are SWIPE [32],
YIN [9], RAPT [7] and SHRP [16], YAAPT [8], SRH [15],
PEFAC [19] and SFF-CEP [33]. For all the methods, F0 search
range was set between 60 − 1500 Hz according the study on
singing voice in [3]. For evaluation purposes, the frame shift is
fixed to 10ms for all the methods.

6. Results and Discussion
Table 1 shows the performance comparison of various meth-
ods obtained by averaging all types of singing voices for entire
database. It can be seen that, the proposed method (SIH) outper-
forms all the standard methods in terms of GPE. Among stan-
dard methods, RAPT, SFF CEP and YIN provide better results

Table 3: Performance comparison of various F0 estimation
methods for laryngeal mechanisms (LM1, LM2 and LMx).

Laryngeal Mechanism Method GPE SPD MPD

Laryngeal Mechanism 1

SFF CEP 9.43 3.74 4.88
SRH 30.03 1.49 1.46
SIH 2.47 2.15 2.09
SWIPE 2.73 1.66 1.69
YAAPT 6.77 3.31 4.89
YIN 9.08 0.88 0.62
RAPT 5.04 1.67 1.59
PEFAC 7.31 3.93 3.8
SHRP 15.7 1.37 1.21

Laryngeal Mechanism 2

SFF CEP 0.31 12.44 25.4
SRH 6.67 3.35 3.4
SIH 0.39 3.83 3.82
SWIPE 0.03 3.04 3.21
YAAPT 58.96 5.67 6.95
YIN 0.53 1.76 1.5
RAPT 11.88 3.01 2.76
PEFAC 61.75 5.24 3.33
SHRP 36.24 3.02 2.32

Laryngeal Mechanism x

SFF CEP 3.77 7.88 11.03
SRH 12.36 1.71 2.05
SIH 5.36 1.99 2.09
SWIPE 9.8 2.17 2.37
YAAPT 19.76 6.63 9.07
YIN 11.64 1.02 0.92
RAPT 9.61 2.11 2.39
PEFAC 48.19 3.41 2.48
SHRP 27.78 1.73 1.51

than SRH, YAAPT, PEFAC and SHRP. The SWIPE method is
significantly better than all of these. It is to be noted that, al-
though SFF CEP method was shown to be better than SWIPE
in case of speech signals, it is not as efficient as SWIPE for
singing voices.

Table 2 gives the performances based on singing categories:
baritone, countertenor and soprano. Out of the three singing
categories considered, the SWIPE method performs better than
any other standard methods. Although the proposed method is
significantly better than SWIPE, its performance is marginally
low in the case of countertenor. Even in the case of laryngeal
mechanisms, the proposed method performs better than stan-
dard methods, except for a marginal difference with SWIPE in
LM2. This can be seen in Table 3.

7. Summary and Conclusion
In this paper, we proposed a simple method of fundamental fre-
quency estimation by exploiting the impulse-like nature of ex-
citation source. A criterion based on the summation of impulse
harmonics (SIH) is proposed for fundamental frequency esti-
mation methods. A comparison with eight state of the art meth-
ods is performed for various singing categories and laryngeal
mechanisms. The proposed method performed better than the
existing methods in many cases.
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