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Abstract
We address the problem of efficient acoustic-model refinement
(continuous retraining) using semi-supervised and active learn-
ing for a low resource Indian language, wherein the low re-
source constraints are having i) a small labeled corpus from
which to train a baseline ‘seed’ acoustic model, and ii) a large
training corpus without orthographic labeling or from which to
perform a data selection for manual labeling at low costs. The
proposed semi-supervised learning decodes the unlabeled large
training corpus using the seed model and through various pro-
tocols, selects the decoded utterances with high reliability us-
ing confidence levels (that correlate to the WER of the decoded
utterances) and iterative bootstrapping. The proposed active
learning protocol uses confidence level based metric to select
the decoded utterances from the large unlabeled corpus for fur-
ther labeling. The semi-supervised learning protocols can of-
fer a WER reduction, from a poorly trained seed model, by as
much as 50% of the best WER-reduction realizable from the
seed model’s WER, if the large corpus were labeled and used
for acoustic-model training. The active learning protocols allow
that only 60% of the entire training corpus be manually labeled,
to reach the same performance as the entire data.
Index Terms: Low resource language, semi-supervised learn-
ing, active learning, confidence levels

1. Introduction
Present day speech recognition has benefited from deep learn-
ing techniques, which call for very large training corpus for
training the acoustic models. A majority of languages for which
speech recognition technologies are developed and deployed
enjoy easily available large speech and language resources and
thereby permit training of deep learning based acoustic models.
While this is so, there are an equal number of diverse languages
which qualify to be called low-resource languages according to
several criteria. Such criteria include limited availability of dig-
ital spoken language corpus, lack of script level representations
(needed for acoustic model training via labeling), limited means
of labeling the speech corpus (orthographic transcrption), lim-
ited access to linguistic knowledge, expertise or resources by
which to acquire lexical representations, annotations etc.

Within this spectrum of low-resource criteria, we specifi-
cally address the scenario where there is availability of adequate
speech corpus, but having the data annotated (orthographic la-
beling) is expensive or not possible. Interestingly, such a low-
resource setting has a parallel to high-resource settings such as
voice-search applications (for high-resource languages), where
it is required to have continuous re-training of deep-learning
based acoustic models from user-data available in a continuing
basis, but which are expensive to be labeled, due to the high
throughput of the incoming data, which makes it difficult for a

manual process to label such large volume data in a continu-
ous manner. Such applications, requiring the incoming data to
be labeled, call for techniques similar to that needed for low-
resource settings where possible large speech corpus has to be
labeled even for the first level acoustic model training.

Here, we address the scenario of optimally utilizing a large
speech corpus without the associated orthographic labeling, by
means of semi-supervised learning and active learning proto-
cols, by which the corpus can be labeled and used for acous-
tic model training. The broad frameworks of semi-supervised
learning and active learning has a long history in both ma-
chine learning in general [1], [2], [3], [4], [5] and particularly
in speech recognition [6], [7], [8], [9], [10], [11, 12, 13, 14].
With respect to speech recognition, the early variants of semi-
supervised learning were in the form of lightly-supervised
acoustic model training [15, 16, 17, 18, 19, 20, 21, 22], and
more recently has attracted renewed attention with the require-
ments arising from voice-search type of applications such as
referred above [23, 24] and low resource setting (as is the focus
here) [25, 26, 27, 28, 29]. Active learning has its origins in ma-
chine learning theory [4], further adapted to speech recognition
in specific forms such as uncertainty sampling using confidence
levels, entropy and sub-modular function based data selection
[30, 31, 32, 33]. Semi-supervised methods focus on how the
unlabeled corpus can be decoded, with associated decoding er-
rors (given the need to start with a poorly trained model with
which to decode the larger corpus) and arrive at means of uti-
lizing such erroneous decoding effectively for model improve-
ment. Active learning methods focus on being able to select
data from the decoded large corpus, in such a way that the se-
lected data is most informative in the sense that this data has
information complementary to the current acoustic model, and
which therefore, when used for model retraining, offers the best
model refinement comparable to the entire data.

In this paper, in the case of semi-supervised learning, we
start with a seed model trained on a very low seed training data
and use it to decode the large unlabeled data and propose an
iterative bootstrapping protocol for using such decoded labels
to efficiently retrain the acoustic models, thus completely cir-
cumventing the need for manually labeling the large unlabeled
corpus. In the case of active learning, we likewise use the seed
model to decode the unlabeled corpus, but perform a ‘data se-
lection’ by confidence level criteria, wherein the selected data
can be manually labeled, and used for acoustic model training;
here the focus is on showing that such a data selection can yield
a smaller proportion of the entire data to be manually labeled,
but offer the same performance as the entire data would, thereby
resulting in a large saving in the manual effort and cost needed
to reach a specific performance on a held out test corpus.
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2. Data corpus and experimental settings
We have used a data set of an Indian language ‘Tamil’ 1. We
use 15.6 hours of this data set, which is divided into three parts,
as above, namely, Dseed the ‘labeled’ seed data set from which
the seed acoustic model AMseed is trained, DU the unlabeled
larger data set which is to be used by semi-supervised learning,
and T the held out test data on which to perform the test decod-
ing to derive the WER to characterize the efficacy of the acous-
tic model retrained by the semi-supervised learning on DU . The
15.6 hours of total data is divided into Dseed: DU : T in a
25:65:10 split, i.e., Dseed is 3.74 hours, DU is 9.8 hours and
T is 1.52 hours.

In this work, we have used DNN-HMM framework trained
using Kaldi [34] and with word level trigram language mod-
els. We use MFCC feature vectors (13 dimensions spliced with
+/- 4 frames to get 40 dimensional feature (MFCC + LDA +
MLLT + fMLLR), spliced with +/- 5 frames to get 440 dimen-
sion feature). We use RBM pretraining (CD-1) on a train 90%
and cross-validation 10% split and train 4 RBMs with hidden
layer dimension of 1024 using 10 epochs. DNNs are trained
into triphone states with 10-12 epochs of cross-entropy training
and mini-batch stochastic gradient descent, with input dimen-
sion 1024, hidden layer dimension 2016 and softmax layer out-
put dimension of 2016. We also used sequence discriminative
training using state-level minimum Bayes risk (sMBR) criterion
using 6 epochs of stochastic gradient descent.

3. Semi-supervised learning
The semi-supervised learning scenario essentially involves
starting with a seed acoustic model trained from a small seed
data with labeling (assumed available in a low resource setting),
and be able to use a significantly larger data set without label-
ing (as is typical in a low resource setting) and establish means
of using the unlabeled data in the larger data set to refine (re-
train) the seed acoustic model in such a way that the resulting
refined acoustic model performs on a held out test data with
performances close to what would be obtained if the acoustic
model were trained with the larger data labeled with ground-
truth, i.e., on all of the available data, including the seed data
and the larger data, with the larger data now being labeled - for
purposes of establishing the best performance realizable from
the entire available data as in a high-resource setting. This be-
longs to the class of ‘self-training’ approaches.

We propose a broad framework of semi-supervised learning
as illustrated in Fig. 1, within which we identify two specific
scenarios, a non-iterative procedure and an iterative procedure.

3.1. Non-iterative procedure

The semi-supervised learning scenario we consider first is
called the ‘non-iterative’ procedure as in Fig. 1. Here, the seed
acoustic model AMseed is used to decode DU to derive word
label sequences, with an inherent WER distributed across the ut-
terances of the data set. The WER distribution is shown in Fig.
2, as the vertical histogram on the WER axis (y-axis); it is clear
that the seed acoustic model has a large spread of WER. Ideally,
utterances with lower WER can be treated as close to ground
truth labels and used for retraining AMseed, thereby making
available more data from DU to improve AMseed. Since the

1Tamil language read speech data provided by SpeechOcean and
Microsoft for the Low Resource Speech Recognition Challenge for In-
dian Languages in Interspeech 2018; with the lexicon IIT-Madras Com-
mon Label Set Lexicon for Tamil (57745 words + SIL + <UNK>)

Figure 1: Framework for semi-supervised learning

Figure 2: Scatter plot of utterance level confidence level and
WER and associated confidence level and WER histograms

WER is not available (as the ground truth of DU is realistically
not available), we need other metrics by which we can measure
the accuracy of the decoding of the utterances in DU . One of the
readily available measure is the confidence level of a decoded
utterance, derived from the posterior of each word segment with
respect to the word-level label it is aligned to in the decoding.
Fig. 2 shows this strong correlation between utterance level
WER and confidence level for utterances from DU as decoded
by AMseed (note the quadratic regression fit) with higher con-
fidence levels corresponding to lower WERs. The distribution
of confidence levels itself is shown as the histogram on the x-
axis; typically, this is determined by how good AMseed is; for
the AMseed used (from 25% of the entire data), higher confi-
dence levels are more likely. Note that for smaller Dseed, this
distribution is likely to skew towards lower confidence levels,
i.e., higher confidences will be less likely.

With the availability of the utterance level confidence level
as a metric correlated to WER, we propose a ‘non-iterative’ pro-
cedure, as in Fig. 1. DU is split into bins Bn, n = 1, . . . , N
with confidence intervals CIn, n = 1, . . . , N , defined by the
confidence levels (0.95, 1), (0.9, 0.95), (0.85, 0.9), (0.8, 0.85),
(0, 0.8) (i.e., N = 5). The bins, in the order of decreasing con-
fidence levels, correspond to increasing WERs and can be used
to derive acoustic models AMn, n = 1, . . . , N , with AM1 de-
rived from available training data, i.e., Dseed + B1, with B1

having utterances with the highest confidence levels, or low-
est WERs, and likewise, AMn, from Dseed + B1 + . . . + Bn

in an accumulative manner. Note that, with the availability of
a refined AM1 (from the accumulated data sets Dseed + B1),
we can generate an improved decoding of bin B2 (than when
derived by decoding using AMseed alone) and which can be
used to derive AM2, and likewise, AMn−1 can be used to in-
duce an improved decoding of bin Bn, whose labels are used
in the training of AMn. By this overall ‘non-iterative’ pro-
cedure, we can derive progressively refined acoustic models
AMn, n = 1, . . . , N , which have better decoding performance
on the test data set T .
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Figure 3: WER profile for the non-iterative procedure

Fig. 3 shows the actual WER profile (on T ) for the non-
iterative procedure of Fig. 1, for the data set split Dseed: DU :
T sets in a 25:65:10. This shows WER (on T ) for different
acoustic models: i) AMseed (trained with Dseed and with a
WER of 30.4% on T as shown), ii) the semi-supervised models
AM1, . . . , AMn . . . , AM5, and iii) AMseed + DU which is
the acoustic model derived from the combined data set ‘Dseed

and DU with ground-truth labels’ - this sets the performance
limit (WER line marked Dseed + DU at 24.8%) reachable by
any semi-supervised protocol on DU via decoding.

This WER profile reaches the best performance of 29%
WER up to B4. This is 1.4% lower than offered by Dseed alone,
but about 4.2% higher than the performance limit baseline WER
reachable of 24.8%. This profile can be explained and under-
stood in the following way: AMseed, trained with Dseed of
25% split, induces a distribution of confidence levels as shown
in Fig. 4 (marked as Dseed : 25%. Here, the bins with a higher
confidence levels are more populated, showing a good decod-
ing for the higher confidence levels, progressively reducing for
the lower confidence levels. With this bin distribution, the cor-
responding progressive WER in Fig. 3, for AMseed, AM1,
AM2, . . . , AMN shows a ‘convergent’ behavior, i.e., the WER
with addition of B1 to Dseed results in an acoustic model AM1

which is ‘better’ than AMseed and correspondingly lowers the
WER from 30.4%, which progressively decreases with increas-
ing bins, until an intermediate bin (here bin B4), after which the
WER increases, due to the addition of the lower bin B5 with
lower confidence levels and hence the latter stage re-training
being affected by noisy, erroneous decoded labels, causing the
acoustic models to train poorly.

Note that, while this WER profile is acceptably good, a
completely different (and ‘divergent’) profile can result when
AMseed is poorly trained, e.g. with a ‘very small’ Dseed.
This induces a distribution of confidence levels on the bins
Bn, n = 1, . . . , N , as shown in Fig. 4 (marked as Dseed : 5%).
In this distribution profile, the highest confidence level is poorly
populated, with the lower confidence levels progressively more
populated, resulting in bin B1 having poorly decoded labels
(i.e., with high WERs or erroneous labels), with successive
bins also having more poorly decoded labels; as a result, the
WER resulting from combining B1 with Dseed can actually
show a ‘worsening’ of WER due to highly erroneous labels -
i.e., a ‘divergent’ trend on successive additions of bins (at lesser
confidence levels and increased population of utterances with
higher WERs) only make this trend more acute, thereby yield-
ing WERs higher than obtained with AMseed, i.e., the semi-
supervised learning offers no advantage and makes the perfor-
mance worse. Interestingly, the result shown in Fig. 3 has a
‘non-divergent’ behavior possibly attributable to the good de-
coding and distribution profile in Fig. 4 for Dseed : 25%).

Given this kind of ‘non-divergent’ WER profile is realizable
by the non-iterative semi-supervised learning procedure above,
but with the objective of reaching WERs as close as possible

Figure 4: Distribution of confidence bins

Figure 5: Semi-supervised learning: Iterative procedure

to the performance limit obtainable with Dseed + DU i.e., the
24.8% baseline in Fig. 3, we now propose an ‘iterative’ protocol
within this broader framework.

3.2. Iterative procedure

Fig. 5 shows the iterative procedure within the broad framework
of Fig. 1. Here, we primarily note that with each acoustic-
model derived, AMn, n = 1, . . . , N , we can decode the entire
DU repeatedly to derive progressively better decoding of DU in
such a way that the bins Bn, n = 1, . . . , N have progressively
increasing population of utterances, i.e., the utterance level con-
fidence levels increase and the corresponding WER decrease,
thereby the reuse of the iteratively refined bins results in pro-
gressively more accurate acoustic-models which in turn offer
lowering of WERs on T . Fig. 5 shows this as iterations pro-
ceeding from each of the acoustic models AMn, n = 1, . . . , N
to decode DU via (red-dashed lines via the ‘Decode’ block).
In order to visualize the effect of such an iterative decoding of
DU with each AMn, we show in Fig. 6 for AM1 iteration, the
distribution of utterances in bins Bn, n = 1, . . . , 5 with iter-
ations 0 to 3, with iteration-0 corresponding to the distribution
obtained with decoding by AMseed and further iterations by de-
coding with AM1 iteratively retrained using Dseed +B1, with
B1 progressively being repopulated as shown. The progressive
movement of utterances from the lower confidence bins to the
higher confidence bins can be noted from Fig. 6. This in turn
creates a positive ‘boot-strap’ effect of progressive refinement
of AM1 from progressively more number of better decoded ut-
terances in B1. The same effect continues in the iterations cor-
responding to AM2, . . . , AM5.

Fig. 7 shows the WER profile (marked Iter-1) for the itera-
tive procedure described above. Each of the localized iterations
for each AMn are marked. The iterative procedure yields a
lower WER profile than the non-iterative procedure (Fig. 3, re-
produced here for comparison) with the lowest WER of 28.6%.

Now, considering that AM3 resulting from the above itera-
tive procedure offer the lowest WER, it is possible to carry out
a ‘global’ iteration of continuing with the entire ‘iterative’ pro-
tocol, by replacing AMseed with AM3 to decode DU afresh,
and perform another iteration as described above. This then
yields a second WER profile in Fig. 7 (marked Iter-2), which
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Figure 6: Iterative procedure - redistribution of utterances in
bins for AM1 iterations

Figure 7: Iterative procedure - WER profiles
can be seen to offer a further significant decrease in the WERs
and reaching a lowest WER of 27.6% also at B3. While such
‘global’ reiterations can be continued until the successive WER
profiles converge and offer no improvements, we note that the
‘redistribution’ of bins saturates which in turn leads to satura-
tion of the global iterative improvememts.

In summary, we note the following from Fig. 7. In the pro-
posed semi-supervised learning framework on the Indian lan-
guage Tamil, with a data-set of 15.6 hours, 3.74 hours of the
data was used as labeled seed data from which the seed acoustic
model AMseed is trained. The use of AMseed offers a WER of
30.4% on the held out test data T . The use of acoustic model de-
rived from Dseed +DU , with DU ’s ground-truth labels, yields
the performance limit of WER 24.8%, being about 5.6% lower
than with the seed model alone. The best semi-supervised per-
formance (with the iterative procedure, applied twice globally)
offers a WER of 27.6%, which is 2.8% lower than with the seed
model alone, and 2.8% to the performance limit, i.e., half-way
down. This is a 50% decrease in WER of the total ‘WER re-
duction’ achievable in limit, were the entire DU with ground-
truth labels used for training an acoutic model. By this, the use
of the proposed semi-supervised learning procedure, when ap-
plied to a large unlabeled corpus, can reduce the WER from a
poorly trained seed model, 50% closer to the WER realizable
if the large corpus were labeled and used for acoustic-model
training. In terms of overall absolute WER, the proposed semi-
supervised learning offers a 2.8% (absolute) reduction in WER,
which is a 9% relative reduction from the seed model’s perfor-
mance, without requiring labeling of the larger data set.

4. Active learning
In a complementary approach to semi-supervised learning, ac-
tive learning chooses utterances from the decoded DU (large
unlabeled data) that have the potential to be most informative
to enhance the acoustic model (initially trained from the small
seed data set Dseed). The utterances which have higher WER
(indicated by lower confidence levels in the scatter plot of Fig.
2) are considered more informative in the sense of having pho-
netic content which are decoded poorly by their corresponding
current acoustic models, and which therefore, when included

Figure 8: Active learning - WER profiles
into the retraining data - with ground truth labels - has the most
potential to improve these poor acoustic models. Note that such
an active learning scenario essentially performs ‘data selection’
wherein some criterion is used to select data that is most infor-
mative, for further human labeling. The objective is to minimize
the amount of data thus selected to reach a specific performance
(as would be reached by the entire unlabeled data if it were to be
labeled manually), in turn minimizing the manual labeling ef-
fort and costs. This is relevant in a low-resource setting, where
it is desirable to minimize such efforts of manual labeling to
reach a desired performance from a larger unlabeled corpus.

Towards this, we use the confidence level as the metric by
which to choose the most informative utterances, in the same
framework as in Fig. 1, where the bins Bn, n = 1, . . . , N are
ordered in increasing confidence levels. By this, if we were
to start with a poor seed model, the confidence level distribu-
tion will be skewed to have large population in lower confi-
dence levels (since the model is poor, it induces a poor decod-
ing of DU ); this in turn allows more complementary data to be
manually labeled, allowing the corresponding acoustic models
AMn, n = 1, . . . , N to be trained more effectively.

The performance profile (WER profile) of this active learn-
ing protocol is shown in Fig. 8 for data splits Dseed: DU : T in
a 25:65:10 and Dseed: DU : T in a 2.5:87.5:10. It can be seen
that the 2.5:87.5:10 split has a poor Dseed WER (53.1%) which
drops steeply with addition of the bins (in the order of increas-
ing confidence levels), and reaches a performance of 25.4%
which is within 1% of the performance limit of 24.1% (with
Dseed + DU ) at 60% of the full data; this is about 1% lower
than the same percent of data selected randomly. Likewise, the
25:65:10 split shows a similar trend, but given that the Dseed is
larger, the initial Dseed WER is lower (30.8%) and drops more
gradually with increasing bins, also reaching within 1% of the
performance limit of 24.1% at 60% of the full data; this is less
than 1% lower than a random selection for the same amount
of data selected. In summary, active learning as proposed here
using confidence level based data selection does offer a perfor-
mance comparable to the full data, at about 60% of the full data,
making it a useful protocol to follow in a low resource setting.

5. Conclusions
We have addressed the problem of acoustic model training in a
low resource setting, where only a small seed data is assumed to
be available, and have proposed semi-supervised learning and
active learning protocols for refining the seed acoustic model
from a larger, but unlabeled, training corpus. The proposed
semi-supervised learning offers WER reductions by as much
as 50% of the best WER-reduction realizable from the seed
model’s WER, if the large corpus were labeled and used for
acoustic-model training. The active learning protocols allow
reduction of manual labeling to only 60% of the entire training
corpus to reach the same performance as the entire data.
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