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Abstract
Articulation-to-speech (ATS) synthesis generates audio wave-
form directly from articulatory information. Current works in
ATS used articulatory movement information (spatial coordi-
nates) only. The orientation information of articulatory flesh
points has rarely been used, although some devices (e.g., elec-
tromagnetic articulography) provide that. Previous work indi-
cated that orientation information contains significant informa-
tion for speech production. In this paper, we explored the per-
formance of applying orientation information of flesh points on
articulators (i.e., tongue, lips and jaw) in ATS. Experiments us-
ing articulators’ movement information with or without orien-
tation information were conducted using standard deep neural
networks (DNNs) and long-short term memory-recurrent neural
networks (LSTM-RNNs). Both objective and subjective eval-
uations indicated that adding orientation information of flesh
points on articulators in addition to movement information gen-
erated higher quality speech output than using movement infor-
mation only.
Index Terms: articulation-to-speech synthesis, orientation in-
formation, deep neural network

1. Introduction
Articulation-to-speech (ATS) synthesis directly maps articula-
tory information to speech [1, 2, 3]. In addition to contribute
a better understand of how articulatory movements are mapped
to speech, ATS has clinical implications as well. For exam-
ple, ATS can be the software component in silent speech in-
terfaces (SSIs) which are systems enabling speech communica-
tion when an audible acoustic signal is unavailable [4]. SSIs
will benefit individuals after laryngectomy (a surgical removal
of larynx due to the treatment of laryngeal cancer). These in-
dividuals lose their voice but they can still articulate. Current
treatments (i.e., esophageal, trachea-esophageal puncture, and
electrolarynx) for these individuals typically produce mechan-
ical or hoarse sounds, which are difficult to understand. SSIs
have a potential of generating synthesized speech with natural
sounding voice or even laryngectomee’s own voice [5].

ATS has recently gained great interest in SSI [4, 6], be-
cause ATS directly generates speech signals from articulatory
information with slight delay. Another articulation to speech
conversion design in SSI coverts articulation information into
text with silent speech recognition (SSR) [7] and then drive a
text-to-speech synthesis (TTS) [8, 9]. The SSR+TTS design al-
ways causes a delay because SSR takes time for decoding, also

TTS typically requires text processing and analysis stage. Al-
though the quality of synthesized speech of ATS is still not as
good as text-to-speech synthesis due to lacking of textual infor-
mation, the speech output [10, 11, 12] of ATS has been recently
improved to a level that has the potential for SSI applications.

A variety of sensing technologies have been used to capture
articulatory movement including electromagnetic articulogra-
phy (EMA) [13], permanent magnet articulography (PMA)
[10, 11, 12], ultrasound [14], and surface electromyography
(sEMG) [15]. Most of current ATS works used only the artic-
ulatory movement information (spatial coordinates), although
magnetic tracking technologies provide orientation information
of sensors attached to the articulators (e.g., tongue, lips, and
jaw) and recent studies suggest the sensor orientation informa-
tion is significant in speech production [16].

EMA generates a magnetic field and tracks small flesh
point sensors attached to articulators in the electromagnetic
field. Modern 3D EMAs such as Wave (NDI Inc., Water-
loo, Canada), Carstens AG500, and AG501 (Carsens Medi-
zinelectronik, Lenglern, Germany) obtain 3-dimensional posi-
tion data and 2-dimensional orientation data including rotations
around lateral axis (pitch) and longitudinal axis (roll). Two-
dimensional rotations (pitch and roll) are capable of defining
a three-dimensional orientation vector with fixed length using
spherical coordinates.

We assumed that orientation information of EMA sensors
may provide information [17] for articulatory speech synthe-
sis. A previous study [18] indicated that using two tongue
sensors with orientation and position data provides the equiv-
alent amount of information as four sensors with only 2D (x
and y) positional data [19]. Thus, orientation information of
articulatory flesh point sensors may capture useful information
to model the relationship between articulatory movements and
acoustic features. However, orientation EMA data has rarely
been used in ATS.

In this paper, we investigated the effectiveness of using
orientation information alone and together with articulatory
movement information in articulation-to-speech (ATS) synthe-
sis. First, we explored the performance of orientation compo-
nents in each of three directions (x, y, and z) and their combi-
nations in ATS. Then, the performance of ATS using both ori-
entation and position information was validated. Two neural
network models were used in the experiments: standard deep
neural networks (DNNs) and long short-term memory-recurrent
neural networks (LSTM-RNNs). The synthesized speech utter-
ances were evaluated both objectively and subjectively. The ob-
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Figure 1: Sensor locations of EMA data in mngu0 dataset (The
picture is adapted from [20]).

jective evaluation is the accuracies of acoustic parameters pre-
diction. The subjective evaluation is the average preference
scores in naturalness and speaker voice identity (similarity to
original voice) by 10 listeners.

2. Dataset
The mngu0 dataset is a corpus of articulatory data of different
forms acquired from one male British English speaker [20]. We
used the EMA subset [20] of mngu0 which consists of audio
and EMA data with 1,354 sentences recorded using Carstens
AG500 [21]. The total duration of the speech data is about 67
mins [20]. Based on the training, development and testing file
list provided by the dataset, the whole dataset was separated
to a training set with 1,226 sentences, a development set with
63 sentences, and a testing set with 65 sentences. There is no
overlap between the training, development, and testing sets.

The raw EMA data of mngu0 dataset tracks 12 sensor coils
in 3D space with two angles of rotation [20]. In this study, we
used the 3D position vector P [xyz] of 6 sensors (Figure 1): up-
per lip (UL), lower lip (LL), lower incisor (LI), tongue tip (TT),
tongue body (TB), tongue dorsum (TD) extracted from raw
EMA data, and the 3D orientation vector of each sensor pro-
vided by the dataset. Here, x is left-right, y is anterior-posterior,
and z is vertical. The movement of the head was subtracted
from these sensors’ position data to obtain head-independent
articulatory movement. The sampling rate of EMA data is 200
Hz. The 3D orientation vector O[xyz] is a unit length vector
which represents the orientation of a sensor in 3D space (Figure
2). The audio data with a sampling rate of 16 kHz was simulta-
neously recorded with articulatory data [20].

3. Methods
3.1. Articulation-to-Speech Synthesis

In this study, we implemented ATS models that predict acous-
tic parameters from articulatory position and orientation data
with a trained DNN or LSTM-RNN. The predicted acoustic
features include: Mel-generalized cepstral coefficients (MGCs)
[22], band aperiodicities (BAPs) [23], logarithm of fundamen-
tal frequencies (logF0), and voiced/unvoiced (V/UV) labels.
Accordingly, the objective evaluation of experimental results
is the prediction accuracies of these features, which are mel-
coefficient distortion (MCD), band aperiodicities distortion,
root mean square error of fundamental frequencies (F0-RMSE),
and voiced/unvoiced error rate. The input of ATS includes sen-
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Figure 2: Demonstration of orientation and position vectors of
an EMA sensor.

Table 1: Experimental setup.
Acoustic Feature 187-dim. vectors
Mel-generalized coefficients (MGCs) (60-dim. vectors) +

∆ + ∆∆ (180-dim.)
Band aperiodicities (BAPs) (1-dim. vectors) + ∆

+ ∆∆ (3-dim.)
log-F0 (1-dim. vectors) + ∆

+ ∆∆ (3-dim.)
Voiced/Unvoiced (V/UV) label 1-dim.
Sampling rate 16000 Hz
Windows length 25 ms
Articulatory Feature
Articulatory position (6 sensors) (18-dim. vectors) + ∆

+ ∆∆ (54-dim.)
Articulatory orientation (6 sensors) (18-dim. vectors) + ∆

+ ∆∆ (54-dim.)
Common
Frame rate 5 ms

DNN Topology
Input Orientation: From 18-dim.

to 54-dim.
Position: 54-dim
Combined: From 72-dim.
to 108-dim.

Output. 187-dim. acoustic feature
No. of nodes each hidden layer 512
Depth 6-depth hidden layers
Learning rate 0.003
Batch size 128
Epoch 25
Optimizer SGD
LSTM Topology
Input Position: 54-dim

Combined: 90-dim.
Output 187-dim. acoustic feature
No. of nodes each hidden layer 256
Depth 3-depth hidden layers
Learning rate 0.003
Batch size 1024
Epoch 50
Optimizer Adam

Vocoder WORLD

sor position vector P , orientation vector O, and their combina-
tions. All the articulatory data were concatenated with their first
and second order derivatives as the input of the neural network
models.

Long short-term memory-recurrent neural networks
(LSTM-RNNs) can model long-range temporal information by
overcoming the vanishing gradient problem in conventional
recurrent neural networks (RNNs). LSTM-RNN based models
have been successfully used in ATS with only articulatory
position information by outperforming DNN-based ATS
[12, 10, 24]. Therefore, we adopted LSTM-RNN-based ATS to
model the long-range temporal relationship between acoustic
parameters and both the articulatory position and orientation
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Table 2: Results of using orientation (O) and positional information (P ) separately.

O[x] O[y] O[z] O[xy](Y aw) O[xz](Roll) O[yz](Pitch) O[xyz] P

MCD (dB) 6.57 5.59 5.55 5.29 5.21 5.31 5.19 4.895
BAP (dB) 0.193 0.175 0.176 0.165 0.165 0.168 0.163 0.159
F0-RMSE (Hz) 10.80 10.57 11.00 10.24 10.31 10.38 10.14 10.162
V/UV (%) 23.49 17.88 18.08 16.03 15.92 16.44 15.93 14.378

information.
After the acoustic parameters were predicted, the WORLD

[25] voice encoder was used to generate speech waveform. The
neural network models and objective evaluations were imple-
mented with Merlin toolkit [26]. More detailed information of
experimental setup is shown in Table 1.

3.2. Orientation Information for ATS

To understand if orientation information alone of the EMA sen-
sor data is significant in ATS, we first conducted experiments
using only three-dimensional orientation vector provided by the
dataset. As shown in Figure 2, for each sensor, the vector
P [xyz] denotes the position vector P from the head sensor to it,
the vector O[xyz] defined a unit vector which represents the ori-
entation of the sensor. To clarify, O is numerically independent
of P . In other words, changes in orientation only correlated to
sensors’ self rotation rather than sensors’ movement direction.
O[x], O[y], and O[z] denote the projection of sensor rotation
amount in the x, y, and z axes, respectively. O[xy], O[xz], and
O[yz] are the concatenations of O[x], O[y], and O[z], provid-
ing the rotation information of sensors in the x−y (yaw), x−z
(roll), and y − z (pitch) planes (Figure 2), respectively. O[xyz]
is the orientation of sensors in the real world which combines
rotations in all three dimensions. In addition, O[x] is the vector
sum of yaw (rotation around the z axis) and roll (rotation around
the y axis) rotation’s projection on the x axis. Although O[x]
contains projections of both yaw and roll rotations, it contains
less information than directly concatenating them. Similarly,
O[y] contains pitch and yaw, O[z] contains roll and pitch.

3.3. Combination of Position and Orientation Information
for ATS

To determine if flesh point articulatory orientation information
can be complementary to position information in ATS, we con-
ducted experiments using positional data with and without ori-
entation information. First, to obtain the baseline results, we
used DNN to evaluate the ATS performance of using only 3D
position vector (P [xyz]). Then, DNN-based ATS experiments
using all combinations of orientation components (O[x], O[y]
and O[z]) along with P were conducted to find the best combi-
nation of orientation components.

After that, we fed the best combination of position and ori-
entation components into an LSTM-RNN-based ATS to deter-
mine if LSTM-RNN outperforms DNN. We hypothesized that
LSTM-RNN might show better performance than DNN for the
combination of orientation and position information [12].

4. Results and Discussion
4.1. ATS Using Orientation and Positional Data Separately

Table 2 shows the objective measures (MCD, BAP, F0-RMSE,
and V/UV%) of using the individual components of articula-
tory orientation vectors: O[x], O[y], O[z], and their combina-

tions in DNN-based ATS. Interestingly, the performance with
all the orientation components (O[xyz]) is comparable to that
using positional information (P [xyz]) in terms of F0-RMSE,
BAP, MCD, and V/UV error rates. The results indicate even
orientation information alone is useful in ATS.

Regarding the performance of individual component of the
orientation vectors, we observed that O[xyz] outperformed
other combinations in all evaluations (Table 2). This result is
not surprising, because higher dimensions may contain more
information. Also, all the orientation vectors with two compo-
nents such as O[xy] produced better results than all the orien-
tation vectors with single component. For single component,
O[z] outperformed O[y], whereas O[y] was better than O[x].

4.2. ATS Using Combined Orientation and Positional Data

Figure 3 shows the results of using orientation combined
with three-dimensional position vector P in DNN-based ATS
(Lower values indicate better performances, the yellow bars are
the best performed in the figure). When orientation information
was added, the ATS performance was significantly improved
compared to positional information alone. P + O[yz] outper-
formed all other combinations in all evaluations in DNN-based
ATS. For P with single component of O, P + O[z] performed
the best in MCD and V/UV prediction, whereas P + O[y] per-
formed the best in F0 and BAP prediction. Besides, except for
F0 RMSE, P + O[xz] outperformed P + O[xy] in other three
objective evaluations.

Next, we evaluated the combination of P [xyz] + O[yz] in
LSTM-RNN-based ATS and compared the results to LSTM-
RNN-based ATS with P only (Figure 4). The results indi-
cated that LSTM-RNN-based ATS follows the trend that adding
O[yz] to P [xyz] would improve the performance. Moreover,
LSTM-RNN outperformed DNN in ATS using P both with and
without O[yz]. These results show the effectiveness of applying
orientation information in ATS based on LSTM-RNN.

We observed O[yz] was the most helpful set among all
the combinations when using both position and orientation data
(Figure 3). According to speech science, healthy adult speakers
rarely intend to move their tongue left or right during speech
[27], except for producing lateral sounds like ”/l/” and ”/r/”
which may require oriention change in left and right direction.
However, all sensors were attached to the middle of articula-
tors in this study, producing lateral sound still don’t led to left
or right rotations. Therefore, the rotation information in the
y− z plane is more correlated with articulatory movement than
those in other two planes. Thus, we think the O[yz] compo-
nent (pitch, rotation around x) contains the most information of
speech production. In contrast, it is also observed that O[xyz]
was better than O[yz] when only orientation data was used (Ta-
ble 2). Moreover, other orientation combinations performed
differently in ATS using orientation only and ATS using both
orientations and positions. Given the different performance pat-
terns in Table 2 and Figure 3, we believe that there are correla-
tions between the orientation components and position informa-
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Figure 3: Results of objective evaluations using positional data with or without orientation information.
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Figure 4: Objective evaluation of LSTM-RNN.

tion which need to be discovered in the future.
Finally, subjective evaluations were conducted using posi-

tional information (P ) with and without orientation information
(O[yz]) on DNN-based and LSTM-RNN-based ATS methods.
Figure 5 gives the average preference scores in naturalness and
similarity to original voice given by 10 listeners (20 sentences
of 65 testing samples were evaluated by listeners). For the eval-
uation, firstly we asked listeners to choose their preferences
in terms of naturalness and similarity between speech samples
generated from LSTM-RNN-based ATS using P and those us-
ing P +O[yz]. Then, given P +O[yz], we let listeners choose
their preferences between LSTM-RNN and DNN-based ATS.
Our results show that adding O[yz] to P outperformed P alone
in both naturalness and similarity. In addition, LSTM-RNN-
based ATS performed better than DNN-based ATS in both sub-
jective evaluations.

Limitation. Although the experimental results confirmed
our hypothesis that adding EMA sensors’ orientation informa-

28%
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72%

75%

P+O[yz]: DNN vs LSTM

LSTM: P vs P + O[yz]

Naturalness

30%

33%

70%

67%

P+O[yz]: DNN vs LSTM

LSTM: P vs P + O[yz]

Similarity

Figure 5: Results of subjective evaluations.

tion to positional information would improve the ATS perfor-
mance, this study is still preliminary with only one subject. Fur-
ther studies with EMA data from multiple subjects are needed
to verify these findings particularly on the performances of the
individual orientation components in the x, y, and z directions.

5. Conclusions
This study investigated the effectiveness of applying orienta-
tion information of sensors attached to flesh points on articu-
lators (tongue, lips, and jaw) in articulation-to-speech (ATS)
synthesis. EMA sensors’ position information with and with-
out orientation information were used as input to DNN-based
ATS and LSTM-RNN-based ATS. The experimental results
proved the effectiveness of applying orientation information in
ATS. Adding orientation information representing pitch rota-
tion (O[yz]) produced the best ATS results on both the DNN-
based ATS and LSTM-RNN-based ATS. In addition, LSTM-
RNN-based ATS outperformed DNN-based ATS.
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