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Abstract

Recurrent neural networks (NN) with long short-term memory
(LSTM) are the current state of the art to model long term de-
pendencies. However, recent studies indicate that NN language
models (LM) need only limited length of history to achieve ex-
cellent performance. In this paper, we extend the previous in-
vestigation on LSTM network based n-gram modeling to the
domain of automatic speech recognition (ASR). First, apply-
ing recent optimization techniques and up to 6-layer LSTM
networks, we improve LM perplexities by nearly 50% relative
compared to classic count models on three different domains.
Then, we demonstrate by experimental results that perplexities
improve significantly only up to 40-grams when limiting the
LM history. Nevertheless, the ASR performance saturates al-
ready around 20-grams despite across sentence modeling. Anal-
ysis indicates that the performance gain of LSTM NNLM over
count models results only partially from the longer context
and cross sentence modeling capabilities. Using equal context,
we show that deep 4-gram LSTM can significantly outperform
large interpolated count models by performing the backing off
and smoothing significantly better. This observation also un-
derlines the decreasing importance to combine state-of-the-art
deep NNLM with count based model.
Index Terms: speech recognition, language-modeling, LSTM,
n-gram

1. Introduction
In statistical speech recognition, the language model (LM) es-
timates the prior probability for strings of words, for sentences
or utterances. Models usually factorize the sentence probabil-
ity by chain rule using conditional dependence on the previous
words (Eq. 1). These history conditioned word probabilities
are estimated mostly by maximum likelihood criteria, and often
approximated by assuming conditional dependence only on the
previous n− 1 words (n-gram). Traditionally, the probabilities
are estimated directly, resulting in the well known count based
models [1, 2, 3]; however, practical estimation is restricted to
n ∈ {4, 5} words even on billion word corpora. Exponen-
tial, or max-entropy models can be seen as a generalization of
the count models. They generate the posteriors from a com-
mon, properly chosen feature space [4, 5]. Deep neural net-
works (NN) learn such features extremely well, and have be-
come the state-of-the-art approach, leading also to considerable
ASR performance gains over classic count models [6, 7]. Re-
current, nowadays long short-term memory (LSTM), NNLMs
are broadly used and their structures fit naturally to sequences
with variable length [8, 9, 10]. Thus, they might be capable
of exploiting extreme long range dependencies, and there is no
need for n-gram approximation in Eq 1.
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However, there is a returning need to determine the effec-
tive length of history the actual state-of-the-art models exploit,
due to the continuous progress in natural language processing
[11, 12]. Performance of shallow sigmoid feed-forward (FF)
network usually saturated at 4 to 10-grams [10, 12, 13]. But FF
LM is indeed able to take advantage of up to 20-grams when
using deep structure and rectified linear units (ReLU [14]), as
has been shown in [15]. Applying the state-of-the-art LSTM
approach of [16], in [17] an investigation was carried out to dis-
cover the effective memory of such recurrent LM. The authors
concluded that powerful models using only 13-grams should be
able to match the state of the art.

In this paper, the study of [17] is extended. Focusing also
on word error rates (WER), we validate n-gram LSTM lan-
guage models on three different ASR tasks (narrow-band tele-
phone speech, broadband Skype calls, broadcast news). Besides
re-optimizing our previous best LSTM models, we attempt to
estimate the necessary language model history to achieve high
recognition performance. Further experiments are carried out to
measure, if interpolation of count and NNLM is still necessary
for the best results, and if spanning context across neighbor-
ing utterances using the best scoring hypothesis is beneficial. It
is generally believed, that the improvement of NNLMs results
from long-span modeling capabilities. Thus, we also design
experiments to quantify how much gain is related to modeling
longer dependencies.

2. Experimental setup
2.1. Speech corpora

We evaluated LSTM n-grams on three different ASR tasks:
Models for English narrow-band telephone conversation are

based on the standard 300 hours of Switchboard corpus (SWB-
300). The lexicon size was limited to 30k. For language mod-
eling we also used the Fisher corpora, resulting in 24 million
running words. Our cross validation (CV) set was defined only
on the Switchboard part, randomly selecting around 10% of the
recordings. The details of the speaker adaptive and discrimina-
tively (MPE-SA) trained acoustic model (AM) are described in
[18]. Perplexities (PPL) and recognition results are reported on
the complete Hub5 2000 (Hub5’00) test set.

The English broadcast news and conversation speech recog-
nizer was build within the Quaero project [19, 20]. The speech
corpus consisted of 250 hours of data. For language model
training, text data was collected from 9 different sources (e.g.
English Gigaword, web blogs) and consisted of about 3 billion
words. Following the experimental setups in [21], a subcor-
pus of 50 million words was also defined using the best match-
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ing domain (e.g. transcription of acoustic data). The lexicon
size was 150k. The ASR experiments were carried out with a
speaker independent (SI), hybrid, 6-layer bidirectional LSTM
AM trained according to the minimum phone error (MPE) rate
criteria [22]. Results are reported on the project evaluation set
of 2013, similar to [21, 15].

Previously we also developed speech recognition systems
for the IWSLT’2016 evaluation campaign [23, 24]. The task
focused on recognizing German Skype conversations. The
speaker adaptive and sequence discriminative AMs were trained
according to [18]. For this task, we train language models on
a corpus of 1-billion words covering 11 different domains [25].
The reported perplexities (PPL) and WERs were measured on
the evaluation set. Similar to the Quaero setup, a sub-corpus of
40 million running words were also selected to train NNLMs.
Since the vocabulary size was 377k, word-class approximation
was used on this task [24], except when doing multi-domain
training of the last layer.

For all the above mentioned tasks, 4 or 5-gram Kneser-Ney
(KN) smoothed count models were trained on each data source
separately. The final count models were obtained by linearly
interpolating those models, minimizing perplexity on the CV
or development set. Furthermore, previous LSTM LM models
were also available, and we used them as additional baselines in
our language modeling experiments.

2.2. Implementations
All of our previous LMs were trained using simple stochastic
gradient descent. Here we extended the LM training by the most
recent techniques: dropout [26], Nesterov momentum acceler-
ated Adam [27, 28, 29]. Dropout is applied to the output of the
LSTM, but not to the recurrency. Similar to [30], we also added
a projection layer to the recurrent connection, which allowed to
increase the number of LSTM cells.

To train n-gram LSTM models, a fixed length of truncated
history should be processed for each word position separately.
Like in the case of feed-forward networks, the beginning of the
sentence should be padded with the sentence boundary symbol.
Unfortunately, the recurrent state resulting from generating the
output for the previous word position cannot be re-used. On one
hand this allows for stronger randomization of the training data,
because each target label can be handled independently. On the
other hand, this leads to a significant increase in computational
cost with long n-grams. E.g. a 6-layer LSTM estimating 41-
grams virtually corresponds to using a 240-layer feed-forward
network. In contrast, a fully recurrent model’s effective depth is
not limited (equal to the number of layers times word position),
but by re-using previous states, it needs to perform only a single
forwarding step at each layer.

Uni-directional forward processing of the history, however,
allows to speed up training by estimating conditional probabil-
ities for the next few words as well, using a window of labels.
This leads to modeling also few tokens longer n-grams, thus
we call this approach jitter n-gram, similar to the approch in
[31]. An example is given in Fig. 1. As can be seen, the model
estimates in the same time a 4 and 5-gram model. Since the
position of window of labels is picked randomly over the word
sequence, the same target label can appear at different positions
in the window. To train n-gram LSTM, we used e.g. 15 jitter for
40-gram, and only 2 jitter for 3-gram models. The jitter is used
only during model training and was switched off when measur-
ing perplexities and rescoring. Our final LM models are up to
6-layer LSTM networks, thus we also applied as much paral-
lelization between layers as possible [32]. We also note that

p(wi|wi−1
i−4)p(wi+1|wi

i−4)

wiwi−1wi−2wi−3wi−4

L
ST

M
la

ye
rs

Figure 1: Jitter n-gram: example of a 3-layer, 5-gram, recur-
rent NNLM with a jitter of 2. Layers are unfolded along the
word sequence, and blocks with the same color are evaluated in
parallel.

Table 1: Optimization of single-layer LSTM LM on Switch-
board, PPLs are reported on the CV set.

number of nodes in: dropout
word recurr. LSTM & PPL #param.

embed. proj. cell NAdam
1000 - 1000 - 52.2 [18] 68M
500 500 49.7 32M

+ 47.2
128 256 2048 - 52.1 15M

+ 45.0

using such a deep LSTM network, word-class approximation
resulted only about 10% relative speed-up on Quaero.

The final NNLMs for Quaero and IWSLT were trained us-
ing billion word corpora. Since the billion word corpus does not
fit to the target domain perfectly, fine-tuning on the smaller cor-
pus was always performed in the last step. To exploit data from
various sources, we developed a log-linear interpolation meth-
ods for NNLM in [15]. To squeeze the maximum performance
out of the models, this multi-domain (MD) approach was also
used. We trained domain dependent output layers on the last
hidden layer output of the best LSTM NNLM, without updating
the hidden layers. The interpolation parameters were optimized
on the development set.

NNLMs were trained on the concatenation of neighboring
sentences, and minimized the perplexity directly by stochas-
tic gradient descent. The learning rate scheduling and early
stopping was controlled by the improvement of the objective
function on the cross-validation, or development set. LSTMs
without the n-gram constraints performed 150-300 backprop-
agation through time steps before update. Batch size for jitter
models was set to 64, whereas classic LSTM processed only 4
sequences in parallel to achieve the best results. We also no-
ticed during our experiments that n-gram LSTM LMs are ex-
cellent initialization to train unconstrained ones. The best,∞-
order LSTM LMs include this technique (Sec. 3.2). When the
NNLMs were evaluated, estimating the conditional probabili-
ties across utterances or sentences was optional. To measure
the ASR performance of our LSTM LMs, the lattice output of
our speech recognizer was processed by rwthlm [33].

3. Experimental results
3.1. LSTM LM optimization
In the first set of experiments we re-optimized our previous
LSTM LM on the Switchboard task, (row 1 in Table 1), with-
out n-gram constraints. As can be seen, significant, over 10%
relative gain in perplexity can be achieved by restructuring the
network, increasing the size of LSTM layers up to 2048, and re-
stricting the number of parameters by a projection layer. How-
ever, introducing the projection layer was only beneficial with
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Table 2: Overall improvements of our LSTM LMs on various
tasks, compared to count LM (KN) and previous LSTM base-
lines. +3B/+1B indicates training on billions of words, and
+MD denotes multi-domain interpolation approach. NNLM re-
sults are without interpolation with count model.

Task / Model PPL #param
SWB-300 CV Hub5’00

KN4 75.9 74.6 5M
74.5 73.8 21M

NN prev. baseline [18] 52.2 52.3 68M
1-layer 45.0 46.3 15M
3-layer 39.6 42.1 25M
6-layer 38.4 40.8 38M
Quaero-EN dev eval
KN4 (3B) 134.3 132.1 559M

NN prev. baseline [21] 100.5 106.1 160M
1-layer 89.6 92.6 53M
6-layer 73.1 76.2 76M

+3B 69.3 71.9
+MD 68.9 71.6

IWSLT’16 dev eval
KN5 (1B) 277.5 264.3 189M

NN prev. baseline [24] 215.2 209.3 198M
4-layer 127.5 127.1 163M

+1B 124.0 123.4
+MD 116.3 117.0

Table 3: Effect of n-gram initialization of classic LSTMs. Mod-
els had 6-layers and were trained on 50M-Quaero data.

n-gram batch PPL speed
context size (dev) [kword/s]

40 64 75.4 5.4
∞ 4 74.3 3.8

16 76.0 9.1
40→∞ 4 73.6 3.8

16 73.1 9.1

advanced optimization methods: NAdam and 10% dropout rate.
The reduced embedding and the low-dimensional projection re-
duced the number of parameters drastically. We used the same
model settings for each task, and as can be seen in Table 2, sig-
nificant improvement was achieved in perplexities (PPL). With
the help of advanced optimization, the PPLs plateaued only af-
ter 4-6 LSTM layers. The best stand-alone NNLMs showed
about 50% PPL improvement over the count model, even if it
was trained on billions of words. Multi-domain interpolation
technique proved to be efficient on the German task, where none
of the available text resources truly matched the word distribu-
tion of the development and evaluation sets.

3.2. Effect of initialization with n-gram
Training classic LSTM (“∞-gram”) we noted that the best re-
sults were achieved if the batch size was limited to 4 sequences,
which slowed down the training significantly 3. However, n-
gram LSTMs were very robust against larger batch size. To
combine the benefit of both infinitely long history and faster
training, we experimented with n-gram initialization of classic
LSTM LMs. As can be seen in Table 3, besides being able to
train classic LSTMs in this way faster, slight PPL improvements
were also observed.

3.3. Comparison of n-gram and classic recurrent LMs
In these experiments we limited the word-history a recurrent
LSTM could access to perform the probability estimation. The

Table 4: Effect of limited n-gram context on WER, measured on
Hub5’00. NNLM is interpolated with count LM, λ denotes the
count LM weight.

LM n-gram λ PPL WER
ML-SI MPE-SA

KN 04 1.00 74.6 15.7 14.1

+N
N

[18] ∞ 0.18 50.3 13.9 12.6

op
tim

iz
ed

04 0.17 57.9 13.9 12.4
10 0.11 45.7 13.0 11.8
20 0.12 42.0 12.8 11.6
40 0.11 39.4 12.7 11.4
∞ 0.09 39.8 13.0 11.9

0.00 40.8 13.1 12.0

PPL and WER comparison of the limited and unlimited mod-
els can be seen in Tables 4 and 5. As can be seen in Table 4,
using weaker maximum likelihood (ML) AM, the large PPL
differences related to longer contexts still translate to WER im-
provements. Increasing model context (also spanning over ut-
terances), PPL reached a minimum around 40-grams. Reason-
ably good WER can already be achieved with 10-20 grams.
Powerful, speaker adaptive AM did not reduce the relative gap
between the different LMs. For reference, the best system
achieved 11.4% and 12.0% WER on the complete Hub5e’01
and RT03s test sets. On broadcast news and German Skype
calls, similar trend can be observed: the effective NNLM length
is about 20-40 grams (Table 5). As a side note, confusion net-
work based decoding ([34]) of rescored lattices improved the
Quaero evaluation results further to 7.2% WER. Overall, rescor-
ing with optimized LSTM LMs led to large, 14-19% relative,
WER improvement over count models. Experimenting with
short n-grams on Quaero and SWB-300, we also observed that
a 4-gram LSTM NN already accounts for 50% of the WER, and
30% of the PPL improvement. This clearly shows that only part
of the improvement is related to long-span modeling capability.
We noted that the interpolation weight (λ) of the count model
with long-span deep LSTMs is small, only around 0.1. Thus,
we question if count LMs are still really necessary to obtain op-
timal WER (λ = 0.0). Table 4, and 5 also show that no or
only slight degradation can be measured. This indicates that
count models are less complementary to recent NNLMs than
observed previously, e.g in [8, 21, 35].

3.4. Effect of retaining LSTM states across sentences
When the LM estimates conditional probability from long con-
text, then the question naturally arises: is it beneficial to span
language model context over sentences, and utterances? To an-
swer this question, we initialized each rescoring step by the
LSTM LM state of the previous utterance using the single-
best path. The experimental results are shown in Table 6. We
observed growing and significant improvement in perplexities
with increasing context and modeling across sentences. This
indicates that even events far in the LM history can trigger the
probability estimation of the actual word. Importantly, this PPL
improvement also translates to WER improvement.

3.5. Perplexity analysis
In Table 7 we analyzed the perplexities of the count n-gram
LMs, and the LSTM NNLMs with variable history. We calcu-
lated order-wise perplexities by partitioning local perplexities
according to the n-gram hit from the count LM as described
in [35]. The following observations can be made. Similar
to [21, 35], NN with long-span and across sentence model-
ing achieves roughly four times lower perplexities than a count
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Table 5: Effect of limiting LSTM LM history, measured on the
evaluation set of Quaero and IWSLT. NNLMs are interpolated
with count LM, λ denotes the count LM weight.

LM n-gr. λ PPL WER

Q
ua

er
o-

E
N

KN (3B) 04 1.00 132.1 9.6

+N
N

[21]

50M

∞ 0.28 92.0 8.6

op
tim

iz
ed

03 0.56 121.5 9.2
04 0.37 109.9 8.9
20 0.19 77.2 7.9
40 0.18 73.8 8.0
∞ 0.17 72.5 7.9

3B

04 0.33 108.1 8.8
+MD 0.26 103.3 8.8
20 0.16 74.8 7.9
40 0.15 71.8 7.8
∞ 0.13 70.1 7.7

0.00 71.6 7.8

IW
SL

T
’1

6

KN (1B) 5 1.00 264.3 20.4

+N
N

[24]

40M

∞ 0.32 182.8 19.0

op
tim

iz
ed

20 0.17 133.0 17.9
40 0.15 124.9 17.7
∞ 0.15 121.0 17.6

1B 0.09 114.4 17.5
0.00 117.0 17.5

Table 6: Effect of across-utterance language modeling. NNLMs
are interpolated with count model.

SWB Quaero IWSLT
Hub5’00 eval eval

X-utt.n-gr.: 4 10 40 20 ∞ 2040M ∞1B

PPL 60.4 51.2 51.2 79.8 78.8 142.3 136.8
× 57.9 45.7 39.4 74.8 70.1 133.0 114.4

WER 12.5 12.0 12.1 07.9 07.9 018.4 017.9
× 12.4 11.8 11.4 07.9 07.7 017.7 017.5

Table 7: Measuring count model based order-wise perplexities
on the Hub5’00 of Switchboard and Quaero evaluation sets.
Percentage in parentheses indicates the rel. frequency of the
given order on the corresponding set. NNLM results are w/o
interpolation with count model.

n- X- PPL by KN order Tot.
Model gr. utt. 1 2 3 4 PPL

SW
B

K
N

4 n

26408 253 47.4 14.9 74.6(3%) (32%) (34%) (28%)

N
N

19021 195 39.8 15.1 62.7

10 7627 168 34.4 13.0 53.6

y 6760 130 31.4 12.4 47.0
40 5159 108 27.6 11.2 40.5

∞ n 6478 151 35.9 13.9 53.3
y 4866 110 27.6 11.3 40.8

Q
ua

er
o

50
M

K
N 4

n

44736 515 59.8 11.2 163.2(3%) (32%) (34%) (28%)

N
N

3 22386 367 54.7 17.8 144.0
4 16380 312 50.6 12.7 120.4
∞ y 9251 215 38.7 10.3 87.7

3B
K

N

4 n

86050 1143 160.9 25.9 132.1(1%) (22%) (35%) (40%)

N
N

46389 750 122.0 25.9 107.8

∞ 25809 594 98.2 20.8 85.8
y 21308 476 86.1 19.2 75.2

model for lower order. This is due to the fact that NNLM does
not necessarily ignore words from the history and backs off only
to a single, lower order context in case of an unseen n-gram.
The longer the history the larger the gain we observed for lower
orders, but the improvement at higher orders was limited and
saturated at 10-20 grams. Transfer of LSTM states across ut-
terances decreases the word confusion for low order and result
in large perplexity gain. The NNs automatically summarized
the previous utterances into a single vector similar to the ideas
behind trigger, cache LM, or bag of words [36, 37]. Most im-
portantly and in contrast to [21], our optimized LSTM is able
to significantly outperform count models even for higher orders,
and even if the models were trained on billions of words. Limit-
ing the history of the NNLM to the same length as the count LM
(4-gram), we also performed a more fair comparison: at higher
order the two model perform equally. These observations are
an evidence that 4-5 grams can be too short even if they were
observed frequently enough to estimate the conditional proba-
bility robustly. It is also interesting to see that on average even
a 3-gram NNLM could outperform a 4-gram count model (ob-
viously not at order 4 level). When the count model backs off to
bigram, a 3-gram NNLM can still use both words in the history,
e.g. by backing off to skip n-gram estimations [38].

Based on the partitioned and over all perplexities we could
also quantify and localize the improvement of LSTMs over clas-
sic count model. About 15% relative improvement in PPL is
related to the better modeling capacity when we compare mod-
els at same history (e.g. 132.1→107.8 in Quaero). Another
30% improvement is clearly the result of longer span modeling
(107.8→ 75.2). It is also worth to note, that NN gains a lot from
the increasing context (up to 40-grams) where the confusion is
inherently high: at word position where the short n-gram of the
neighboring words has not been seen before.

4. Conclusions
In this paper we experimented with a truncated version of a
state-of-the-art recurrent LSTM NNLM. By limiting its history,
we were able to determine the effective dependencies consid-
ered by such model. As has been observed, perplexities plateau
at around 40-grams, and for ASR purpose 20-gram language
models should be satisfactory. We also showed that highly opti-
mized long-span NNLMs can take advantage of across sentence
or utterance modeling and decrease WER significantly. Addi-
tional experiments revealed the high performing NNLM might
make the interpolation with count models unnecessary in the
near future. Detailed analysis indicated that roughly 2/3 of the
improvement achieved by current best NNLMs is related to the
long-span modeling, and mostly concentrates on previously un-
seen short n-grams. Knowing the effective context, the com-
putationally expensive recurrent processing of n-grams is pre-
sumably not necessary to arrive to the best results. We plan to
explore the alternatives to find fast and efficient NN language
models with limited history.
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[25] M. A. B. Shaik, Z. Tüske, S. Wiesler, M. Nussbaum-Thom,
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[32] J. Appleyard, T. Kociský, and P. Blunsom, “Optimizing
performance of recurrent neural networks on GPUs,” CoRR,
2016. [Online]. Available: http://arxiv.org/abs/1604.01946
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