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Abstract 

Stroke is a devastating condition that affects the ability of 

people to communicate through speech, leading to social 

isolation and poor quality of life. The quantitative evaluation 

of speech and orofacial movements is essential for assessing 

the impairment and identifying treatment targets. However, to 

our knowledge, a tool for the automatic orofacial assessment, 

which considers multiple aspects of orofacial impairment 

(e.g., range of motion in addition to asymmetry), has not been 

developed for this clinical population. In this work, we tested 

a video-based approach for the automatic orofacial assessment 

in stroke survivors, combining low-cost depth sensor and face 

alignment algorithms for extracting facial features. Twelve 

patients post-stroke and 11 control subjects were evaluated 

during speech and non-speech tasks. By using a small feature-

set representing range of motion and asymmetry of face 

movements, it was possible to discriminate patients post-

stroke from control subjects with high accuracy (87%). 

Further insights on the choice of the task and face alignment 

algorithm are provided, demonstrating that a non-parametric 

approach such as SDM can provide better results. Through this 

work we demonstrated the feasibility of an objective tool to 

support clinicians in the assessment of speech and orofacial 

impairment post-stroke.  

Index Terms: Face tracking, stroke, face kinematics, facial 

palsy, asymmetry 

1. Introduction 

Stroke is among the most common causes of death and the 

leading cause of permanent disability in developed countries, 

with nearly 800,000 cases per year in the US and an 

economical annual burden estimated around $34 billion [1]. 

One of the most debilitating aspects of the disease is in 

relation to speaking abilities – more than 40% of patients 

experience motor speech disorders after stroke [2]. Stroke is 

also a common cause of facial palsy, affecting emotional 

expression and social aspects of communication [3]. Patients 

post-stroke (PS) are often socially isolated, unable to express 

their physical and emotional needs, resulting in diminished 

quality of life [4]. 

Objective assessment tools targeting orofacial function 

post-stroke are currently limited in number. This impedes the 

diagnosis of functional impairments and progress monitoring 

during recovery and rehabilitation. Although many clinical 

scales have been developed to grade the facial nerve function 

post-stroke [5]–[8], they may not be commonly accepted by 

the clinical community due to their relatively low reliability 

and cumbersome administration procedures [9]. The 

implementation of these scales is often incompatible with the 

fast pace of clinical practice, where objective and interpretable 

measures must be readily available to clinicians. Therefore, 

patients PS are rarely evaluated objectively, making it harder 

to monitor the process of recovery and rehabilitation as well. 

To overcome these issues, many authors have proposed 

image- and video-based approaches to assess orofacial 

impairments automatically. He et al., 2009 [10] used texture 

features (local binary pattern) to automatically predict the 

score of a clinical scale for grading the facial nerve function 

(House-Brackmann – HB scale [5]), obtaining 93.1% 

accuracy. In [11], the authors used an active appearance model 

to extract the distance between mouth corners across different 

facial expressions. Using this measure, they obtained 87% 

accuracy in predicting the HB grade. Another study [12] 

proposed an image subtraction method to identify peak 

movements during various tasks (e.g., eyebrow raising, eye 

closure, snarl, and wide smile), predicting the HB grade with 

94% accuracy. Despite showing good classification results, the 

above studies did not report tests on patients with orofacial 

impairments due to stroke and performed the analysis on 2D 

static images that may result in reduced robustness against 

head rotation. 

Schimmel et al., 2011 [13] used an infrared (IR) 3D video 

system to quantify the upper and lower facial motor function 

in patients with hemispheric stroke. Although the system was 

able to detect changes in facial muscle function, the 

assessment could not be performed online. Another 3D video-

based approach was proposed by Quan et al., 2012 [14]. The 

authors used 3D scans of the face and measured facial 

asymmetry with the Euclidean distances between 

corresponding facial points on the original scan and its 

mirrored version. The analysis was also performed on 8 

patients PS, but automatic detection of orofacial impairments 

was not performed. It appears, therefore, that an automated 

and real-time tool for orofacial assessment, which considers 

different aspects of orofacial impairments (e.g., range of 

motion in addition to asymmetry) has not been developed or 

used for this clinical population. 

The increasing availability of accurate, low-cost depth 

sensors, along with the development of efficient face 

alignment algorithms provide a great opportunity to introduce 

novel and intelligent systems in clinical environments [15], 

[16]. Previous studies demonstrated the feasibility of 3D 

video-based approaches for the assessment of motor speech 

disorders in patients with Parkinson’s disease and amyotrophic 
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lateral sclerosis (ALS) [17]–[19]. In this work, we aim to 

expand those findings to the automatic assessment of orofacial 

impairment in patients PS, evaluating facial movements 

during speech and non-speech tasks. Specifically, the aims of 

this work are to 1) determine if a 3D video-based system is 

able to automatically discriminate patients with orofacial 

impairment due to stroke from healthy control (HC) subjects; 

2) identify the best tasks for the classification, among those 

commonly used by clinicians during the oral motor 

examination; and 3) determine the influence of the face 

alignment step on the overall classification performance, to 

identify the best approach for the automatic extraction of 

facial features for clinical purposes. 

2. Data Collection 

2.1. Subjects and clinical judgment 

Twelve patients PS (7 male, 5 female; age: 62.0 ± 14.5 

years) and 11 HC subjects (7 male, 4 female; age: 55.8 ± 15.7 

years) were recruited for the study. 10 patients had an 

ischemic stroke whereas, for 2 patients the stroke was 

hemorrhagic. All participants were native speakers of English 

and showed no evidence of cognitive impairment as assessed 

by the Montreal Cognitive Assessment (score ≥ 26) [20]. Two 

trained speech-language pathologists performed a clinical oral 

motor exam [21] on each participant, rating facial range of 

motion (ROM) and asymmetry, among other measures (e.g., 

movement speed, variability and fatigue) during the speech 

and non-speech tasks recorded for the experiments (Sec. 2.2). 

Each measure was assessed with a score between 1 (normal 

function) and 5 (severe dysfunction). The average of the 

scores provided by the two raters were used to calculate the 

score for each participant. Patients PS had higher ROM and 

asymmetry scores as judged by the clinicians (Table 1), 

confirming the presence of orofacial impairment. The 

agreement between the two raters was found to be moderate 

according to the weighted Cohen’s kappa statistic (κ). The 

study was approved by the Research Ethics Boards at UHN: 

Toronto Rehabilitation Institute and Sunnybrook Research 

Institute. Written informed consent was obtained by all the 

participants according to the Declaration of Helsinki. 

Table 1: Mean value and standard deviation of ROM and 

asymmetry scores across the participant groups 

considered in the study 

 
HC 

subjects 

Patients 

PS 

% 

Agreement 
κ 

ROM 1.06±0.13 1.80±0.45 68.9% 0.50 

Asymm 1.31±0.22 2.33±0.70 58.7% 0.55 

2.2. Experimental setup 

Each participant was asked to perform the following tasks: 

rest position for 20s with teeth in normal bite and neutral 

facial expression (REST); maximum jaw opening repeated 5 

times (OPEN); lip puckering (pretending to kiss a baby) 5 

times (KISS); pretending to blow a candle 5 times (BLOW); lip 

spreading (pretending to smile with closed lips) 5 times 

(SPREAD); repetition of the syllable /pa/ in a single breath, as 

fast as possible (PA); repetition of /pataka/ as fast as possible 

(PATAKA); 10 repetitions of the sentence “Buy Bobby a 

puppy” at habitual loudness and speaking rate (BBP). 

During each task, the face of the participants was video-

recorded using the Intel® RealSense™ SR300 camera, placed 

between 0.4-0.5 m from the face [22]. Participants were 

comfortably seated in front of the camera during the 

experiments, and their faces were illuminated by a uniform 

light source placed behind the SR300. Each video-recording 

consisted of a pair of registered and synchronized videos 

(color and depth) recorded at approximately 50 frames per 

second and 640x480 pixels of image resolution. A total of 184 

pairs of color and depth videos was obtained and analyzed in 

this study, including 1119 speech and non-speech repetitions 

distributed as follows: 221 BBP (110 from HC subjects and 

111 from patients PS); 194 PATAKA (107 from HC subjects 

and 87 from patients PS); 225 PA (110 from HC subjects and 

115 from patients PS); 121 BLOW (59 from HC subjects and 

62 from patients PS); 121 KISS (57 from HC subjects and 64 

from patients PS); 119 OPEN (55 from HC subjects and 64 

from patients PS); and 118 SPREAD (53 from HC subjects 

and 65 from patients PS). The acquisitions were performed 

with a customized C++ code and the Intel® RealSense™ SDK 

R3 2016. 

3. Methods 

3.1. Pre-processing 

Each video recording was manually labeled by a trained 

annotator to identify the frames at the beginning and end of 

each speech and non-speech repetition. Before extracting 

facial geometric features for each task, the intrinsic calibration 

parameters, such as the focal length and principal point, were 

estimated for both color and infrared cameras of the SR300. 

This calibration was performed using the Camera Calibration 

Toolbox for Matlab, by recording 25 images of a black and 

white checkerboard pattern at different distances and angles 

with the SR300 camera [23].  

3.2. Face alignment 

The face alignment step was used for the automatic 

location of the facial landmarks (i.e., points of the lips, nose, 

eyes, and eyebrows) on the color video frames of each task. 

Two algorithms were considered in this study: the supervised 

descent method (SDM) for face alignment and the Intel® 

RealSense™ Face Tracking (IntelFT) algorithm [16], [24]. 

SDM is a non-parametric face alignment approach that 

solves the optimization problem (i.e., minimization of the 

difference between image features extracted in a generic 

landmark location and the same features sampled in the true 

landmark location) in a supervised manner. SDM requires a 

training phase to learn the descent directions for estimating the 

facial landmark positions given the SIFT features extracted 

from the color image [24], [25]. In this work, we used the pre-

trained Matlab implementation proposed in [24] that allowed 

tracking 49 facial points (Figure 1a).  

The second approach was the face tracking algorithm 

provided with the Intel® RealSense™ SDK R3 2016. 

Technical details about this approach have not been disclosed 

by the manufacturer. However, it was included in our 

experiments because of its availability with the SDK, which 

allowed a simple implementation with video recordings 

captured with the SR300 camera. IntelFT allowed tracking 78 

facial landmarks (Figure 1b). 

For each pair of color and depth frames, the frontal 

distance (in mm) of the facial landmarks from the camera 
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plane was estimated by sampling the depth image in the same 

location as the 2D facial points obtained on the color frame 

with the two algorithms. Then, using a pinhole camera model 

with the intrinsic parameters estimated during the calibration 

step, the 3D coordinates (in mm) of the facial points were 

obtained. The origin of the 3D coordinate system was the 

color camera center, and X, Y, and Z were the lateral, vertical, 

and frontal axes, respectively. 

3.3. Feature extraction 

For each repetition of each task, 10 geometric features (4 

representing ROM and 6 representing asymmetry) were 

extracted using 3D coordinates of the following facial 

landmarks: right and left eyebrows (RE and LE), inner canthus 

of the eyes (RIC and LIC), right and left mouth corners (RC 

and LC), nose tip (NT), and central points of upper and lower 

lips (UL and LL) (Figure 1). A summary of the features used 

for this work is reported in Table 2. These features were 

extracted with both face alignment algorithms to determine the 

influence of these two approaches on the overall classification 

performance. 

 

Figure 1: Facial landmarks obtained with SDM (a) and 

IntelFT (b). The points of interest for feature extraction are 

highlighted in yellow. 

3.3.1. ROM features 

Lip opening was calculated as the 3D Euclidean distance 

between UL and LL, whereas mouth width was the 3D 

Euclidean distance between LC and RC. These two distances 

were calculated for each frame of a repetition, and then 

normalized with respect to the average lip opening and width 

calculated during the REST task by using the following 

equation: 

𝑋𝑛𝑜𝑟𝑚
𝑖 =

𝑋𝑇𝐴𝑆𝐾
𝑖 −𝑋𝑅𝐸𝑆𝑇

𝑋𝑅𝐸𝑆𝑇
∙ 100                      (1) 

where 𝑋𝑇𝐴𝑆𝐾
𝑖  is a generic distance (lip opening or mouth 

width) calculated for the ith frame of a speech or non-speech 

task, and 𝑋𝑅𝐸𝑆𝑇 is the same distance calculated during the 

REST recording. Thus, for each participant, lip opening and 

mouth width were expressed as percentage with respect to the 

baseline measures obtained at rest. After this normalization, 

the maximum and minimum values of lip opening (OMAX, 

OMIN) and width (WMAX, WMIN) within each repetition were 

used as features for the classification. 

3.3.2. Asymmetry Features 

Left and right mouth areas were calculated as the areas of 

two triangles with vertices LC, UL, LL (AL) and RC, UL, LL 

(AR), respectively. The absolute difference between these two 

areas was calculated for each frame of a repetition, and its 

mean value was considered as a feature for the classification 

(Adiff). 

The Pearson’s correlation coefficient between the LC and 

RC trajectories (re-expressed with respect to the nose tip to 

remove the effect of head rotation) was calculated within each 

repetition (rLCRC). This feature was considered as an index of 

movement coordination between left and right sides of the 

mouth. Highly coordinated movements give rise to values of 

rLCRC close to 1. 

Following the approach proposed by Schimmel et al., 

2011 [13], the following distances were extracted from both 

sides of the face: distance between the eyebrow points and 

inner canthus of the eyes (d0L and d0R); distance between inner 

canthus of the eyes and mouth corners (d1L and d1R); distance 

between inner canthus of the eyes and UL (d2L and d2R); 

distance between the mouth corners and UL (d3L and d3R). For 

each distance, the absolute difference between the measure 

calculated on the right side and its counterpart on the left side 

was considered for the analysis (Table 2). 

 

Table 2: Description of the geometric features. 

 Feature Description 

R
O

M
 OMAX Maximum and minimum values of lip 

opening with respect to REST OMIN 

WMAX Maximum and minimum values of 

mouth width with respect to REST WMIN 

A
sy

m
m

et
ry

 

Adiff Absolute difference between AL and AR 

rLCRC 
Correlation between LC and RC 

trajectories 

d0diff Absolute difference between d0-L and d0-R 

d1diff Absolute difference between d1-L and d1-R 

d3diff Absolute difference between d2-L and d2-R 

d3diff Absolute difference between d3-L and d3-R 

3.4. Classification and statistical analysis 

Each classification instance consisted of a 10-dimensional 

feature vector (each feature was standardized as z-scores) 

corresponding to a single speech or non-speech repetition. The 

above ROM and asymmetry features were used to train a 

support vector machine (SVM) classifier with radial basis 

function kernel. A separate classifier was trained for each task, 

to compare the classification performance across tasks, and for 

each face alignment algorithm, to quantify the influence of the 

face alignment step on the overall classification performance. 

A binary classification was performed: a class label equal to 0 

was associated to the instance if the features came from HC 

subjects, whereas a class label equal to 1 was assigned if the 

repetitions came from patients PS. 

Classification performance was evaluated using a leave-

one-subject-out cross-validation (LOSO-CV). For each fold of 

the LOSO-CV, the instances belonging to a single participant 

were used as a test-set, and the classifier was trained with the 

remaining instances/ subjects. Then, the class of a test-subject 

was predicted by using the majority vote among the classified 

test instances. If the majority of the repetitions were classified 

as PS, then the test subject was classified as PS, and vice-

versa. If the instances classified as PS were equal to the 

instances classified as HC, the subject was classified as HC to 

produce conservative predictions. 

For each test, the classification performance was evaluated 

using the following measures: accuracy (percentage of 

correctly classified instances with respect to the total number 

of instances), sensitivity (percentage of instances from patients 
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PS correctly classified as PS), and specificity (percentage of 

instances from HC subjects correctly classified as HC). The 

Wilcoxon rank-sum test was used to detect statistically 

significant differences in the features between the two classes. 

Classification and statistical analysis were performed using the 

Statistic and Machine Learning Toolbox (Matlab v. 2016b). 

4. Results 

For each test, accuracy, sensitivity and specificity are 

reported in Table 3. For most of the tasks (except for PA), 

features extracted with SDM provided higher performance 

than those extracted with IntelFT. The highest accuracies were 

obtained with BBP (87%), BLOW, and SPREAD (82.6%). 

Features that showed statistically significant differences 

between-group during these 3 tasks are reported in Table 4. 

 

Table 3: Classification performance (Acc: accuracy; 

Sens: sensitivity; Spec: specificity; values are in %). 

For each task, the highest value between the two face 

alignment algorithms is highlighted in bold. 

Task Algorithm Acc Sens Spec 

BBP 
SDM 87.0 75.0 100.0 

IntelFT 60.9 58.3 63.6 

PATAKA 
SDM 73.9 58.3 90.9 

IntelFT 65.2 50.0 81.8 

PA 
SDM 65.2 50.0 81.8 

IntelFT 73.9 83.3 63.6 

BLOW 
SDM 82.6 83.3 81.8 

IntelFT 69.6 58.3 81.8 

KISS 
SDM 60.9 66.7 54.5 

IntelFT 60.9 41.7 81.8 

OPEN 
SDM 78.3 75.0 81.8 

IntelFT 65.2 66.7 63.6 

SPREAD 
SDM 82.6 91.7 72.7 

IntelFT 56.5 83.3 27.3 

 

5. Discussion and Conclusion 

This paper demonstrates the feasibility of a video-based 

marker-less approach for the automatic detection of speech 

and orofacial impairment in patients PS. By using a small set 

of interpretable facial features, we were able to discriminate 

patients PS from HC subjects with high accuracy (up to 87%). 

This work expands previous findings [17], [19], adding further 

evidence to the suitability of video-based technology for 

detecting orofacial impairments due to neurological diseases. 

Our results demonstrated that BBP, BLOW, and SPREAD 

were the tasks that better differentiated the two groups, with 

accuracies >80%. These findings are in line with [19], where 

BBP and SPREAD allowed discriminating patients with ALS 

from HC subjects with 89% and 83% accuracy, respectively. 

The relatively good results obtained with BLOW may be 

surprising especially if we consider the lower performance in a 

similar task like KISS (Table 3). However, Denlinger et al., 

2008 [26] demonstrated that patients with unilateral movement 

disorder may exhibit larger movements during BLOW than 

during lip puckering. This increased amplitude of movements 

may enhance differences between the two groups leading to 

higher classification performance. 

Table 4 shows that in the 3 best tasks, patients PS showed 

higher asymmetry of the lower facial muscles, as indicated by 

higher values of d1diff, d2diff, rLCRC, and Adiff. Among the ROM 

features, WMAX appeared to be decreased in patients PS during 

BLOW. Considering that during this task the mouth width 

decreases from the rest position, the lower values of WMAX 

may indicate that patients PS had difficulty to come back to 

the rest position after pretending to blow a candle. 

Features extracted with SDM provided higher accuracy, 

confirming that a non-parametric method such as SDM is 

suitable when asymmetric orofacial movements are present 

[24]. The only task in which IntelFT outperformed SDM was 

PA. This was probably due to the limited lateral movements 

during the opening-closing gestures in this relatively simple 

task. To the best of our knowledge, previous works have not 

tested how the choice of the face alignment step influences the 

prediction performance in patients with orofacial impairments. 

In this study, we considered a binary classification 

between patients PS and HC subjects, when all patients PS had 

orofacial impairment as judged by the clinicians (Table 1). 

Future developments will aim to correlate the clinicians’ 

judgments, estimating the exact scores assigned during the 

oral motor exam. Also, an automatic segmentation of the 

repetitions of interest will be implemented to fully automate 

the process and translate the technology into clinical 

environments for usability testing.  

This paper shows promising results for the automatic 

detection of orofacial impairment in patients PS during speech 

and non-speech tasks. An objective and continuous assessment 

of the facial function is important not only to evaluate the 

impact of stroke on the orofacial musculature, but also to track 

the recovery during the rehabilitation. In fact, previous works 

demonstrated that targeted orofacial and speech therapy might 

help improve facial movements after stroke, with positive 

impact on orofacial functions, speech, and communication 

abilities [27], [28]. Further clinical validation (i.e., correlation 

between objective features and clinical assessment) is the next 

step required to test the diagnostic efficacy of an automatic 

tool for assessing speech and orofacial impairments post-

stroke. 
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Table 4: Statistical significant differences during the BBP, 

BLOW, and SPREAD tasks (*p<.05; **p<.001) 

Task Feature HC subjects Patients PS 

BBP 
Adiff (mm2) 16.56±9.60 35.20±20.95* 

d1diff (mm) 1.12±0.65 2.28±1.27* 

BLOW 
WMAX (%) 2.14±8.36 -6.34±7.82* 

Adiff (mm2) 17.74±10.33 42.62±28.12* 

SPREAD 

Adiff (mm2) 8.08±4.23 23.78±24.67** 

rLCRC 0.76±0.22 0.40±0.47* 

d2diff (mm) 1.25±0.98 2.70±1.76* 
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