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Abstract
Speaker verification becomes increasingly important due to the
popularity of speech assistants and smart home. i-vectors are
used broadly for this topic, which use factor analysis to model
the shift of average parameter in Gaussian Mixture Models. Re-
cently by the progress of deep learning, high-level non-linearity
improves results in many areas. In this paper we proposed a
new framework of i-vectors which uses stochastic gradient de-
scent to solve the problem of i-vectors. From our preliminary
results stochastic gradient descent can get same performance
as expectation-maximization algorithm. However, by back-
propagation the assumption can be more flexible, so both linear
and non-linear assumption is possible in our framework. From
our result, both maximum a posteriori estimation and maxi-
mum likelihood lead to slightly better result than conventional
i-vectors and both linear and non-linear system has similar per-
formance.
Index Terms: speaker verification, generative model, stochas-
tic gradient descent

1. Introduction
With the increasing popularity of smart phones and home as-
sistants, speech related techniques draw more and more atten-
tion from both academic and industry. While speech recogni-
tion performance keeps improving, now people start to con-
cern more about privacy issues. Given the fact that personal
information is usually shared with those hardware, one natural
question is that how we can make it secure. Speaker verifica-
tion becomes a natural choice and becomes common on many
home assistants. Speaker verification systems distinguish dif-
ferent speakers by their physiological characteristics, and reply
to the corresponding user.

Speaker verification research has a very long history.
Started from 20th century, Gaussian Mixture Model Universal
Background Model (GMM-UBM) was proposed in [1] achiev-
ing great performance. The UBM model is trained on large
corpus to model the speaker independent speech features distri-
bution. Then, Maximum a posteriori is used to adapt the GMM
parameters to any specific speaker. Later, joint factor analysis
(JFA) [2, 3] enhanced the performance of GMM-UBM system.
JFA makes the assumption that between and within speaker
variability spaces are of low-rank. While JFA assumes differ-
ent factors for channel and speaker, following research shows
that even channel factors have information related to speaker
and can improve overall performance. In 2011, Dehak et al. [4]
proposed a simplified framework, which is broadly known as
i-vectors, used single factor defined by a total variability ma-
trix. The point estimate of the total variability factor (i-vector)
is used as a new feature for other classifiers, e.g., probabilis-
tic linear discriminant analysis (PLDA) [5] is used to make
same/different speaker decisions[6, 7].

Recently, with the advent of deep learning technologies,
more research [8, 9, 10, 11, 12, 13, 14, 15, 16] turned to use
neural network to model the speaker variability. In [8, 9], neu-
ral network is used to replace GMM in GMM-UBM model to
provide alignment and statistics. In [11], bottleneck features are
extracted from neural network to make the GMM to get better
unsupervised clustering of the feature space improving results.
Later, different works are proposed to directly use the neural
network for speaker verification [10, 12, 13, 14, 15, 16]. These
networks require to be trained on large amount of data, usually
using supervise learning, and show great performance on both
text-dependent[10, 12, 13, 14, 15] and text-independent[16]
speaker verification.

In this paper we proposed a new framework combining con-
ventional i-vectors with neural network. More specifically, a
generative model that generalizes i-vectors is proposed and we
show that i-vectors is a special case of our new framework.
Back-propagation based stochastic gradient descent is used to
train the model parameters and infer the latent factors. While
representing i-vectors in this new framework, we are enabled
to add non-linearity to i-vectors. Our preliminary results on
SRE16 show that

• minimum diverge estimation is helpful for inference
• Performance of linear and non-linear systems are similar
• Both maximum a posteriori and maximum likelihood

can slightly improve results of conventional i-vectors
This paper is organized as follows. Section 2 introduces

conventional i-vector systems and the proposed new i-vector
framework. Section 3 reports result for i-vector baseline sys-
tem and explores different factors: minimum diverge estima-
tion, non-linearity, maximum likelihood estimation and maxi-
mum a posteriori estimation. Section 4 summarizes the paper
and gives directions for future research.

2. i-Vectors and Non-linear i-vectors
2.1. i-vectors

The i-vector framework models the utterance features as a
Gaussian mixture model (GMM). The shift of utterance depen-
dent GMM supervector mean w.r.t. the universal background
model is assumed to be

m = M + Tw (1)

where M is the original UBM mean, and T is a low-rank ma-
trix mapping low-dimensional i-vector to the high-dimensional
supervector space. The supervector is the concatenation of all
mean parameters. T is usually called total variability matrix.

Expectation maximization is used to train both UBM and
i-vectors model parameters. After extracting i-vectors as fixed-
dimensional embedding, both cosine similarity and probabilis-
tic linear discriminant analysis [5] can be used.
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2.2. Non-linear i-vectors

2.2.1. Model definition

In this work as in the i-vector framework, we assumed that the
utterance features are generated by a GMM,

zij ∼ Categorical(φ)

xij ∼ N (xij |Mzij +Gzij (wi; θ),Σzij)
(2)

where xij is frame j from utterance i, zij is one-hot vector
of Gaussian occupations, and φ are the mixture weights. G
is general function that maps the latent factor w to the shift
between the utterance dependent supervector mean and UBM
mean.

Conventional i-vectors can be considered as

G
′
zi(w; θ) = Tθziw (3)

which is a special case of Equation (2). However, in this work
we try to add non-linearity to the function G. One natural idea
is to add activation function directly to the product of Tθ and
w:

G∗zi(w; θ) = g(Tθziw) (4)

As in the i-vector framework, we will assume that zij posteriors
are given by the GMM-UBM.

2.2.2. Theory

Theory behind proposed framework can be more general. We
want to model connections between observed variables X–the
feature frames of a given utterance– and a latent variable w.
In a generative setting, we want to maximize the marginal like-
lihood of the observed data X given the model parameters θ,
log p(X|θ). However in practice, this is intractable in most
cases. Thus, we maximize a lower bound (ELBO) for that like-
lihood instead,

L(X, θ, q) = log p(X|θ)−DKL(q(w|X)||p(w|X, θ) (5)

where q is any distribution over w. Because KL-divergence
is non-negative, L(X, θ, q) becomes a lower bound of
log p(X|θ). It is actually easier to compute since it can be re-
arranged as

L(X, θ, q) = −Eq(w|X)(log q(w|X)− log p(w,X|θ)) (6)

Variational autoencoder is developed under this theory where
encoder models q(w|x) and decoder models p(x|w). For em-
bedding extraction we care more about q(w|X). In this work,
we simplify this model and we just want to make a point esti-
mate µ of the latent factor. For that, we assume that the form of
q is a Dirac delta distribution,

q(w|X) = δ(w − µ) (7)

where µ is the latent factor point estimate. Thus, Equation (6)
can be simplified as

L(w, θ, q = δ(w − µ)) = H(q) + log p(w = µ,X|θ)
= log p(X|w = µ; θ) + log p(w = µ)

(8)

where H(q) is the entropy of distribution q. So maximizing
L(X, θ, q = δ(w − µ)) derives maximum a posteriori infer-
ence [17].

Figure 1: Diagram of our model. W, M, V is weight, mean
and co-variance of UBM, respectively. Response is fixed thus
there is no backward pass from response to UBM.

In our case, we care about how to find the optimal µ. Mod-
eling the latent posterior p(w|X) is difficult, since X contains
a variable number of frames, so we need to devise some kind
of complex mechanism to accumulate the information of all
the frames into the unique latent factor w . However, similar
to sparse coding, we treated this as an optimization problem,
which simplified the problem. Instead of using closed form
function to obtain µ, as it is proposed in the variational au-
toencoder framework [18], we proposed to assume that µ is a
trainable parameter that we obtain by back-propagation. In this
manner, no encoder function is required but just the decoder dis-
tribution p(X|w). GMM-UBM is adopted as decoder in order
to compare with i-vectors. The same UBM is trained on same
datasets and used for both i-vectors and our method.

The diagram of whole process is given in Figure 1. In each
mini-batch, we calculate response of each Gaussian based on
the UBM model. Then all the embeddings are gathered accord-
ing to data X in the mini-batch and update the supervector of
UBM by function G. Loss value is calculated by data X and
updated UBM. In backward, starting from loss value, gradient
of θ and w is calculated by recursion. In each mini-batch, we
updated θ and corresponding w in this mini-batch. In inference
(i-vector extraction), only µ is updated while θ is fixed.

Although our approach is minibatch-based training, we
want to emphasize the similarities between EM algorithm and
SGD. SGD in general can be seen as a special case of EM. In
each mini-batch we optimize w given θ in previous batch and
we optimize θ given last w. Even each mini-batch cannot pro-
vide accurate gradient information and the step size is relatively
small, with enough updates the system should converge to a
similar point.

2.2.3. Loss function

In this work we consider two loss function according to Equa-
tion (8):
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Corpus #utts Male Female
SRE05 1165 38% 62%
SRE06 5245 45% 55%
SRE08 4504 39% 61%
swb1 30972 46% 54%

Table 1: Training data details: number of utterances from each
corpus and proportion of gender

• Maximum a posteriori estimation. For the prior p(w) we
adopted standard normal distributionN (0, I).

• Maximum likelihood estimation where prior p(w) has
zero weight in Equation (8).

The models that we are using multiply the latent factor by
a low-rank matrix Tθ , that creates an over-parametriced model.
We can change to increase the scale of Tθ and reduce the vari-
ance of w and vice-versa without any consequences in the ob-
jective function that we are using. To solve this and make the
prior of w standard normal, we apply what we call minimum
diverge estimation [2]. This essentially consists in transforming
Tθ as

Tθ = TθKww
1/2 (9)

where Kww is the co-variance matrix of w. In diagonal case,
Kww

1/2 is the standard deviation of each dimension of w. The
intuition is to make w has standard normal distributionN (0, I)
by normalizing Tθ . Experiments related to this is discussed in
Section 3.3.1.

3. Experiments
3.1. Datasets

We experimented using the setup, that we used in our partici-
pation in NIST SRE16 evaluation [19, 20]. In this setup, the
training set included two parts:

• swb1: Switchboard 1 data with each original cut seg-
mented to a single 10 - 60 seconds. The duration is
drawn form a uniform distribution

• sre568eng: 2005-2008 NIST English SRE data also uni-
formly segmented from 10 - 60 seconds.

There were 41859 utterances in total. More details of data
is included in Table 1.

All frameworks were tested on Cantonese portion of the
NIST SRE 2016 evaluation (SRE16). Enrollment utterances
contained about 60 seconds of conversational telephone speech
while the test utterances varied from 10 - 60 seconds. We es-
timated mean of i-vectors from NIST SRE16 development set
”major” data and use it to center all i-vectors for enrollment and
test data.

3.2. Experiments setup

UBM model was trained on whole training set and diagonal co-
variance was used in all experiments. Both UBM model and
i-vectors baseline were trained using Kaldi [21].

Results for 400-dimensional i-vectors baseline with differ-
ent number of diagonal Gaussians using MAP estimation is pre-
sented in Table 2. From the table, clearly more Gaussians give
better result but the difference is not that large. Due to GPU
memory limit we used the 256 Gaussians UBM to test our ap-
proach.

#Gaussians EER DCF10−2 DCF10−3

256 13.98 0.746 0.862
2048 13.47 0.732 0.853

Table 2: 400-dimensional i-vectors system baseline

Model Learning rate EER DCF10−2 DCF10−3

MDE 0.005 13.18 0.722 0.858
no MDE 0.005 14.05 0.748 0.878
no MDE 0.0005 13.21 0.723 0.858

Table 3: Effect of minimum diverge estimation (MDE). With
minimum diverge estimation fixed learning rate can be used.
Otherwise adjusting learning rate manually is needed.

In the following we introduce the method used to create the
mini-batches that we used in our stochastic back-propagation
algorithm. Because of the independence assumption, we can
shuffle the frames in each utterance without altering the model.
By shuffling the frames, we increase the variability of the fea-
ture chunks that we used to train the model. It is known that
increasing randomness it is beneficial to make deep models to
generalize well. After that we split each utterance into small
chunks where each chunk included 128 frames. All those
chunks were shuffled in each epoch before feeding them into
our model. Each mini-batch contained 200 chunks. From our
observations, both size of chunk and number of chunks in each
mini-batch is quite important for final performance. The first
one decides how accurate gradient of w is and the second one
decides how much inter-session variability there is in the mini-
batch. In the training learning rate is set to 0.001 and Adam[22]
was used. For inference learning rate is set to 0.005 and 10 iter-
ations are used to find the optimal w. For fair comparison, we
also set w to 400-dimensional embedding. For both i-vectors
and non-linear i-vectors, probabilistic linear discriminant anal-
ysis (PLDA) was adopted as the back-end.

3.3. Results

3.3.1. Effect of minimum diverge estimation

As discussed in Section 2.2.3, minimum diverge estimation is
used to reduce the effect of imbalance between scale of Tθ and
variance of w. Results are given in Table 3.

Clearly from table minimum diverge estimation is helpful
and even learning rate can be manually set to very small num-
ber (like 0.0005 in the table), minimum diverge estimation still
improves the result. This is coherent with what we know from
the standard i-vector practice.

3.3.2. Comparison between linearity and non-linearity

For non-linearity parametric rectified linear unit[23] is adopted
as function g in Equation (4):

gp(x) =

{
x, if x ≥ 0

αx, otherwise
(10)

where α is a parameter learned from data and fixed for all di-
mensions. During training we start α from 1, which correspond
to linear case.

Two configurations are tested in our experiments:

G1(w) = M + gp(Tθw)

G2(w) = M + g1p(T1g
2
p(T2w))

(11)
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Method EER DCF10−2 DCF10−3

1 Layer PReLU 13.20 0.733 0.862
2 Layer PReLU 14.17 0.755 0.878
Linear 13.18 0.722 0.858

Table 4: Comparison between linearity and non-linearity. Min-
imum diverge estimation is adopted in all systems

Method EER DCF10−2 DCF10−3

MLE 14.05 0.748 0.878
MLE+MDE 13.18 0.722 0.858
MAP 13.44 0.745 0.872
MAP+MDE 13.11 0.744 0.876

Table 5: Comparison between MAP and MLE estimation
with/without minimum diverge estimation(MDE)

where T2 project w into an intermediate hidden space with
1024 dimension. g1p and g2p has different parameters.

Results in Table 4 reveals that non-linearity doesn’t give
improvement. G1 and G2 is named as 1 Layer PReLU and 2
Layer PReLU, respectively. We find out that α for g2p is close
to 0 which makes intermediate representation extremely sparse.
Result suggests linear assumption is good enough for mean shift
compared to preliminary non-linear assumption. For non-linear
case more further research is still needed.

3.3.3. Comparison between maximum likelihood estimation es-
timation (MLE) and maximum a posteriori (MAP) estimation

The only difference between MLE and MAP estimation is the
weight of prior in Equation (8). Table 5 reports results of MLE
and MAP. From the table it is obvious that MAP estimation has
similar performance as ML estimation. However, with the intro-
duction of prior term p(w = µ), w is closer to standard normal
distribution, which reduces the relative improvement of mini-
mum diverge estimation. We further plot distribution of ran-
domly selected dimension in training for both MLE and MAP
and plot in Figure 2. From figure w tends to have similar dis-
tribution as standard normal in MAP, compared to MLE. Over-
all, maximum likelihood estimation gives better decision cost
function (DCF) while maximum a posteriori estimation lead to
better equal error rate (ERR).

Figure 2: Distribution of random selected dimension of training
non-linear i-vectors. Clearly MAP training lead to distribution
more close to standard normal distribution

4. Conclusions
In this paper we presented a novel stochastic based non-linear
i-vectors system. The proposed model follows the UBM ap-
proach, the same as i-vector. However, it generalizes i-vectors
allowing to use a non-linear function to map the latent factor (i-
vector) to the utterance dependent GMM super-vector mean. In
this kind of model estimating the latent factor or the model pa-
rameters is intractable. However, we can resort to a similar ap-
proach used in variational autoencoders [18], where model pa-
rameters are obtained by stochastic back-propagation and latent
factor are computed by a deep neural network. In our frame-
work, we proposed to use stochastic back-propagation to com-
pute both latent factors and model parameters. In the training
phase, model parameters and latent factors were estimated iter-
atively. Meanwhile in evaluation phase–when obtaining enroll-
ment and test i-vectors–, the model parameters were fixed.

We experimented with this framework using linear and non-
linear decoders to compute the GMM means. Our experiments
on SRE16 show that our framework with both MLE and MAP
training lead to slightly better result than conventional i-vectors.
However non-linear assumption didn’t really improve the result.
Further work, includes extending non-linearity by allowing dif-
ferent non-linearity in each dimension, and adapting different
parameters simultaneously.
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