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Abstract
This paper describes the ISI ASR system used to generate ISI’s
submissions across Gujarati, Tamil and Telugu speech recog-
nition tasks as part of the Low Resource Speech Recognition
Challenge for Indian Languages. The key constraints on this
task were limited training data, and the restriction that no ex-
ternal data be used. The ISI ASR system leverages our earlier
work on data augmentation and dropout approaches and cur-
rent work on multilingual training within a Eesen based end-to-
end Long Short Term Memory (LSTM) based automatic speech
recognition (ASR) system trained with the Connectionist Tem-
poral Classification (CTC) loss criterion, and demonstrates, to
the best of our knowledge, one of the first times such systems
have been applied to low resource languages with performance
comparable and some cases better than hybrid DNN systems.

Our best monolingual systems show between 6.5% to
25.5% relative reduction in word error rate (WER) compared to
the challenge organizer’s Time Delay Neural Network (TDNN)
based baseline WERs. We further extend these systems with
multilingual training approaches that lead to an additional 4.5%
to 11.1% relative reduction in WER as measured on the devel-
opment set.
Index Terms: speech recognition, LSTM, CTC, low-resource
ASR, multilingual learning

1. Introduction
The Low Resource Speech Recognition Challenge for Indian
Language consists of a speech recognition task in three Indian
languages, Gujarati, Tamil and Telugu, with 40 hours of tran-
scribed audio data per language and a development set consist-
ing of 5 hours of transcribed audio per language1. The key con-
straint in this challenge, apart from the low amounts of training
data, was the exclusion of external data beyond what is provided
as part of the challenge. For each language, lexicons with pho-
netic pronunciations were provided in two phoneme sets, the
CMU Indic Frontend [1] as well as the IITM Common Label
(IITM-C) set [2], with the choice of which lexicon to use left to
the participants.

We have been investigating speech recognition approaches
for low resource languages as part of our ongoing efforts in the
IARPA Machine Translation for English Retrieval of Informa-
tion in Any Language (MATERIAL) program [3]; this chal-
lenge offered an opportunity to extend our early work to In-
dian languages and explore the robustness of our modeling ap-
proach. Note that apart from a rudimentary familiarity with Tel-
ugu, the author has no expertise in the other languages, Gujarati
and Tamil; as such, none of the work presented here required or
used any language specific knowledge or expertise.

1Data provided by SpeechOcean.com and Microsoft.

In recent years there has been quite a bit of interest in
speech recognition in low resource languages [4]. The key ap-
proaches to address the general paucity of target language data
include data augmentation [5, 6, 7, 8, 9], semi-supervised train-
ing, e.g., [10, 11, 12], Multilayer Perceptron (MLP) based fea-
ture extraction [6, 12, 13, 14], cross-lingual knowledge transfer
[15, 16], multi-task [17, 18], multilingual training [19, 20, 21]
and multilingual phoneme sets [22]. Data augmentation seeks
to increase the amount of available training data by transform-
ing the original data to generate additional data; examples of
data transformations include speed perturbation [9], vocal tract
length perturbation [5], and speaker transformation [8]. Semi-
supervised training is similar to data augmentation in that in
seeks to increase available training data, but does so by using a
bootstrap ASR model to transcribe any available untranscribed
data, and adding the resulting transcripts, with the highest con-
fidence in accuracy, to the training set e.g., [10, 11, 12]. MLP
based feature extraction involves using a neural network trained
on larger datasets to generate features, referred to as bottleneck
features, with the implicit assumption that the initial layers of
a neural network extract a language agnostic representation of
speech features that would be helpful under low resource con-
ditions. The validity of this general approach is supported by
results across multiple teams [6, 12, 13, 14]. Multi-task train-
ing, on the other hand, attempts to increase the effectiveness of
the available data by training on different but related tasks at the
same time, in effect, guiding the model to model the underly-
ing latent features common to the target tasks, see [18] for low
resource language efforts and [17] for a general treatment. An-
other class of approaches addresses the lack of data by combin-
ing available data across languages via a seed model for the low
resource language, referred to as cross-lingual transfer [15, 16],
or directly training a multilingual system on multiple languages
which include the target language [19, 20, 21]. A similar related
approach is to train on a set of languages with a common mul-
tilingual phoneme set and use the trained model on an entirely
different language, e.g. [22]

It should be noted that the majority of these approaches
for low resource languages were implemented in the general
framework of a hybrid DNN ASR system, where the neural
network component, trained with cross-entropy loss, generates
posterior probabilities that are then combined, in most cases,
with an hidden markov model to capture the time element of
speech, to generate output speech recognition text. Our efforts,
on the other hand, use a recurrent neural network model, in par-
ticular, a long short-term memory (LSTM) based neural net-
work model, that jointly models the features and their temporal
context, trained with the connectionist temporal classification
(CTC) loss function [23]. CTC directly estimates the probabil-
ity of the output sequence given the input sequence of speech
features. Since CTC is a sequence to sequence loss measure
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there is no need for frame level alignments for training, un-
like the cross-entropy loss which requires frame level align-
ments. An LSTM-CTC ASR system can therefore be trained
as an end-to-end sequence-to-sequence system using backprop-
agation with no additional data beyond the input speech features
and the output phoneme, grapheme, or word sequence.

Initial efforts to use recurrent neural network based end-to-
end ASR systems were restricted to domains with an abundance
of training data, measured in the thousands of hours, where
these systems outperformed comparable hybrid DNN systems
[24, 25]. However, until recently these systems lagged com-
parable hybrid DNN systems when trained on smaller training
sets (e.g., discussion in [26]). In [27, 28], we demonstrated that
with suitable data augmentation, feature presentation coupled
with dropout on recurrent and feedforward connections, LSTM-
CTC ASR systems could be competitive with hybrid DNN sys-
tems with 100-250 hours of data. In this paper, we demonstrate
that LSTM-CTC ASR systems can be competitive even with
40-50 hours of data. To the best of our knowledge, this is the
first time that LSTM-CTC ASR systems have been built en-
tirely on low resource languages without access to additional
data, though in [29], LSTM-CTC systems trained on larger data
sets are adapted to low resource languages.

In this paper, we start in Section 2 with a description of
our canonical LSTM-CTC ASR system architecture and detail
design decisions. Section 3 presents the results of applying this
system architecture in the context of monolingual training. Sec-
tion 4 details our efforts to overcome data paucity using multi-
lingual training, with Section 5 covering additional attempts to
further improve on the multilingual systems with fine tuning
and retraining on the target language data. Section 6 provides a
brief summary of our submission and conclusion.

2. LSTM-CTC ASR System Architecture
The LSTM-CTC ASR system we have developed is based the
publicly available Eesen Toolkit [30]. The acoustic model in
Eesen is a deep bidirectional LSTM neural network, trained
with the CTC loss function, which minimizes the negative log
summed probability of the correct label sequence given the
input sequence, via a forward-backward algorithm that sums
across all possible alignments. Details on the CTC loss function
can be found in [23]. Eesen uses a weighted finite state gram-
mar (WFST) to incorporate the language model and generate
the final word sequence from the network outputs. Details can
be found in [30]. The vector formulas that describe the LSTM
cell are

it = σ(Wixt + Riht−1 + Pict−1 + bi) (1)
ft = σ(Wfxt + Rfht−1 + Pfct−1 + bf) (2)
ct = ft � ct−1 + it � φ(Wcxt + Rcht−1 + bc) (3)
ot = σ(Woxt + Roht−1 + Poct + bo) (4)
ht = ot � φ(ct) (5)

where xt, ot and ht respectively represent the input, cell mem-
ory and cell output vectors at time t, W are rectangular in-
put weight matrices connecting inputs to the LSTM cell, R are
square recurrent weight matrices connecting the previous mem-
ory cell state to the LSTM cell, P are diagonal peephole weight
matrices and b are bias vectors. Functions σ and φ are the lo-
gistic sigmoid and tanh nonlinearities respectively. Operator�
represents the point-wise multiplication of two vectors.

These cells are then arranged into a bidirectional layer
where data is processed independently in the forward and back-

ward directions [31]. The outputs from both forward and back-
ward directions are concatenated to form the input to the next
recurrent layer.

yt = [
−→
h t,
←−
h t] (6)

The LSTM model in our experiments consists of 4 bidirec-
tional stacked layers of 640 LSTM cells (320 in each direction).
The base input features consist of 40 dimensional mel warped
filterbank features with ∆ and ∆∆ features using a 25ms win-
dow and 10ms frame rate, normalized with per utterance means
subtraction and variance normalization2. The model outputs
correspond to the context independent phonemes. The base
features are further stacked and strided to create composite
frames, consisting of three base frames, with no frame over-
lap, across consecutive composite frames, resulting in a nominal
30ms frame rate for the system as a whole. The salient elements
of our baseline system are our data augmentation strategy and
dropout approach. Both of these approaches are covered in de-
tail in [27, 28] but we provide a high level overview below for
completeness.

2.1. Data Augmentation

Our approach to data augmentation, max perturbation [27], es-
sentially creates a 9 fold expansion of the available data by per-
mutating vocal tract length normalization (VTLN) and feature
frame rate factors during base feature generation. In particu-
lar, we use VTLN factors in [0.8, 1.0, 1.2] and vary the feature
frame rate in [8ms, 10ms, 11ms], creating a total of 9 variants
of the data. In early work [27], we found that max perturba-
tion significantly outperforms speed perturbation; since then we
have explored both approaches across a variety of languages
and corpora and discovered that, by tuning speed rates, speed
perturbation can largely match max perturbation performance.
We continue to use max perturbation since it almost always pro-
vides the best performance without additional tuning.

2.2. LSTM Dropout

The implementation of dropout within the ISI ASR system mir-
rors the sequence-level, stochastic dropout approach detailed in
[27, 28]. At a high level, we implement dropout on the feedfor-
ward connections i.e., the output of each LSTM layer, as well
as within each LSTM cell, on the LSTM cell update i.e., recur-
rent dropout without memory loss following [32]. In the case of
feedforward dropout, Equation 6 becomes

yt = mf � [
−→
h t,
←−
h t] (7)

where mf is the dropout mask applied to the output of the
LSTM layer. For recurrent dropout, Equation 3 changes to

ct =ft � ct−1

+ mr � it � φ(Wcxt + Rcht−1 + bc)
(8)

where mr is the dropout mask applied to the cell update within
the LSTM cell. In both dropout paradigms, we keep the dropout
mask fixed across all timesteps in an utterance, and vary the
mask on a per utterance basis. During training, for each mini-
batch, we determine whether to apply feedforward or recurrent
dropout based on an equiprobable Bernoulli distribution, i.e.,
an unbiased coin toss. The dropout rate is set to 0.2, i.e., 20%

2In general, we apply per speaker means subtraction and variance
normalization, but in this challenge speaker detail was not available.
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Table 1: Phoneme counts across phoneme sets.

Phoneme Set

Language CMU-Indic IITM-C IITM-CR

Gujarati 54 50 32
Tamil 38 37 30
Telugu 56 49 33

Combined 60 57 38

of connections are masked during training, across all our experi-
ments – we did not attempt to optimize this meta parameter. See
[27, 28] for a more detailed exposition of our dropout paradigm
and related experiments.

2.3. Phoneme Set

One early choice in this challenge was which phoneme set to
base our systems on. In earlier work [27], we observed a
small improvement in performance with a reduced phoneme
set, where we collapsed phoneme stress variants, on Librispeech
with LSTM-CTC models. These earlier experiments biased our
preference towards more compact phoneme sets. Initial review
of the phoneme sets indicated that the IITM-C set was slightly
more compact than the CMU-Indic set. Table 1 summarizes the
phoneme counts across both phoneme sets. Motivated by the
same experience, we also wanted to explore if an even more
compact representation would be beneficial to system perfor-
mance. To this end, we reduced the IITM-C set by remov-
ing phoneme suffixes [2]: h indicating aspiration, x indicating
retroflex place of articulation, q corresponding to a nukta/bindu,
and n indicating vowel nasalization, in the lexicon. This re-
duced set, IITM-CR in Table 1, reduced the combined phoneme
set by 33% to 38 phonemes. One drawback of phoneme reduc-
tion, however, as applied to the IITM-C set, is that the native
script is no longer readily recoverable from the transliteration.

3. Monolingual Training
To establish an LSTM-CTC baseline for each language, we
trained separate systems for each language using the IITM-C
and IITM-CR phoneme sets. The performance of these sys-
tems on the development and evaluation sets are summarized
in Table 2. In all experiments, we use a trigram WFST lan-
guage model, generated from the corresponding language train-
ing transcripts. During the course of the challenge, the organiz-
ers updated the lexicons for all languages; given limited time,
we opted to continue training all systems with the original lexi-
con, instead of restarting training, and decode using the updated
lexicon. For completeness, after the challenge was concluded,
we reran the baseline system using the CMU-Indic phoneme set,
as well as scored all systems on the evaluation test set. These
results are also included in Table 2. For comparison, the chal-
lenge organizer’s CMU-Indic based baseline results on the de-
velopment set with Kaldi TDNN systems are shown in Table
3. Our monolingual systems for Gujarati and Telugu outper-
form the challenge baselines, with significant over performance
in Gujarati on the order of ≈25% relative reduction in WER.
The identically trained Tamil system, however, lagged the chal-
lenge baseline with a 4-5% relative increase in WER. Following
the challenge and initial submission of this paper, we discov-
ered that using the updated lexicon for Tamil training resulted

Table 2: Monolingual LSTM-CTC system results (%WER).

Phoneme Set

Test Language CMU-Indic IITM-C IITM-CR

Dev
Gujarati 15.26 14.73 14.98
Tamil 18.18 20.51 20.25
Tamil† 19.27 19.08
Telugu 20.10 20.03 19.87

Eval
Gujarati 21.80 20.91 21.44
Tamil 18.00 20.31 20.44
Tamil† 18.62 18.77
Telugu 20.04 19.77 19.60

† Trained with updated lexicon.

Table 3: Development set baselines from organizers (%WER).

Language CMU-Indic

Gujarati 19.76
Tamil 19.45
Telugu 22.61

in performance on par with the challenge baseline, also in Ta-
ble 2. Across all three languages we observe that the IITM-C
and IITM-CR based systems are largely equivalent in perfor-
mance – suggesting that a simplified phoneme set would suffice
for these languages in particular and perhaps other Indian lan-
guages as well.

The CMU-Indic phoneme set performs considerably better
on Tamil but lags on Gujarati and Telugu in comparison with
the IITM-C phoneme sets, and explains, in part, why our Tamil
system performance did not show similar WER improvement
over the organizer’s baseline as the Gujarati and Telugu sys-
tems. That said, comparing the challenge organizer’s TDNN
model vis-à-vis the CMU-Indic based LSTM-CTC Tamil sys-
tem, we note that the LSTM-CTC system demonstrates a 6.53%
relative reduction in WER on the development set.

4. Multilingual Training
In this challenge, the restriction of no external data precluded
the option of cross-lingual language transfer, where one uses a
model, trained in a language with more data than is available
for the low resource language, as an initial seed model to train
the target language system e.g., [13, 21]. Alternatively, one can
train a multilingual system by combining the data from multiple
languages. This challenge is clearly more conducive toward the
latter, multilingual training approach.

A number of approaches to multilingual training have been
proposed e.g., [16, 19, 20, 21]. The typical approach involves a
DNN model sharing the input and all hidden layers with a sep-
arate output layer for each language e.g., [16, 20, 21]. An alter-
nate simpler approach is a model in which all layers, including
the output layer, are shared. In this model, the output units cover
the superset of phonemes in the component languages. This lat-
ter approach has the additional advantage of increasing training
data for phonemes that overlap across languages, which would
be beneficial given the overall scarcity of data within and across
languages. In light of these benefits, we opted for fully shared
layers for multilingual modeling in our experiments.

Our implementation is fairly straightforward: we pool data
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Table 4: Multilingual LSTM-CTC system results (%WER).

Phoneme Set

Test Language IITM-C IITM-CR

Dev
Gujarati 13.32 13.24
Tamil 19.45 20.87
Telugu 18.86 18.54

Eval
Gujarati 19.33 19.30
Tamil 19.61 20.92
Telugu 18.56 18.86

across the three languages, Gujarati, Tamil and Telugu; the
model output corresponds to the superset of phonemes in these
languages. Since the available training data were similar in size,
we did not attempt to explore language weighting by changing
the relative amount of training per language within a training
epoch [19]. During decoding, we apply the language specific
WFST language model (LM) as as opposed to a pooled LM
since the test language is known.

Table 4 summarizes the results from training on the pooled
data set, with the original lexicon, and decoding with the lan-
guage specific WFST grammar. Across both development and
evaluation sets, except for the Tamil IITM-CR model, we see a
consistent improvement with the pooled models over the mono-
lingual baseline systems. One can also ask if there are better
approaches to pooling, e.g. should only familial languages be
pooled? From the results, while Telugu and Tamil belong to the
same Dravidian family and Gujarati does not, Gujarati shows a
sizable WER reduction: 9.57% on development, 7.56% on eval-
uation. This indicates that with small training data sets, famil-
ial correspondence is less important than the additional training
data provided by the pooled languages.

5. Fine Tuning and Retraining
An interesting consequence of the multilingual training de-
scribed in Section 4 is that we now have a model trained on
more data than each target language, a prerequisite for cross-
lingual knowledge transfer. Strictly speaking, the cross-lingual
knowledge transfer paradigm would be more exact if we train
a multilingual system on two languages and use that as a seed
model for the third language.

Given time constraints we decided to proceed with the three
language multilingual model as a seed model with two training
approaches. In one approach, fine tuning, we use the unaug-
mented data in each language to train the corresponding mono-
lingual model starting from the multilingual model. Alterna-
tively, we can train with the full augmented data set and retrain
a monolingual model from the multilingual seed model.

Fine tuning and full retraining results, using the original
lexicon during training, are summarized in Table 5 and Table
6 respectively. Across both approaches, we see only minor
changes in WER in all three languages. This indicates that at
this operating point, a multilingual model captures all the avail-
able language specific discriminative detail and further retrain-
ing provides no additional gain. It would be interesting to see if
we can improve on the pooled multilingual system with a more
classical cross-lingual knowledge transfer paradigm by training
on two languages to create a multilingual model which is then
trained on the third language. Given the small training data size,
following the results in Section 4, the choice of which languages

Table 5: Fine tuning multilingual model results (%WER).

Phoneme Set

Test Language IITM-C IITM-CR

Dev
Gujarati 13.10 13.28
Tamil 19.59 20.84
Telugu 18.90 18.63

Eval
Gujarati 19.22 19.73
Tamil 19.72 20.92
Telugu 18.74 18.95

Table 6: Retraining with multilingual model as seed (%WER).

Phoneme Set

Test Language IITM-C IITM-CR

Dev
Gujarati 13.54 13.24
Tamil 19.59 20.94
Telugu 18.94 18.61

Eval
Gujarati 19.23 19.11
Tamil 19.80 20.82
Telugu 18.77 18.71

to pool, familial or otherwise, may not be as crucial as it might
be with a larger training data set.

6. Challenge Submission and Conclusions
Our challenge submission for all three languages consisted of
the output from both the IITM-C and IITM-CR based multilin-
gual pooled models described in Section 4 on their respective
language evaluation set. The Gujarati results from the IITM-
C based pooled model placed in the leader-board for that lan-
guage.

In this paper we have described the ISI submission for the
Low Resource Speech Recognition Challenge for Indian Lan-
guages. Our best system, a single multilingual LSTM-CTC
based ASR system across three languages, shows for the first
time the viability of such models on sub-100 hour training sets.
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