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Abstract
The paper describes BUT Automatic Speech Recognition
(ASR) systems for two domains in OpenSAT evaluations: Low
Resourced Languages and Public Safety Communications. The
first was challenging due to lack of training data, therefore mul-
tilingual approaches for BLSTM training were employed and
recently published Residual Memory Networks requiring less
training data were used. Combination of both approaches led to
superior performance. The second domain was challenging due
to recording in extreme conditions: specific channel, speaker
under stress, high levels of noise. A data augmentation process
was very important to get reasonably good performance.
Index Terms: speech recognition, multilingual training,
BLSTM, data augmentation, robustness

1. Introduction
The NIST Speech Analytic Technologies (OpenSAT) pilot eval-
uation running in June 2017 focused on three tasks: Automatic
Speech Recognition (ASR), Speech Activity Detection (SAD)
and Keyword Search (KWS) and on three domains: Low Re-
sourced Languages (Babel), Speech from Video - (VAST, with
SAD task only) and Public Safety Communications (PSC).

Our team decided to work on the ASR task for both possible
domains: Low Resource Languages and Public Safety Com-
munications. While the first one is challenging by limited re-
sources, the second one is addressing English but contains a
lot of speech under stress conditions recorded through specific
channel. To be successful in both challenges, several acous-
tic models were built (section 2) on top of various feature ex-
traction schemes (section 3). The detailed system descriptions
are given in sections 4 and 5 and results are presented in sec-
tions 4.2 and 5.3.

1.1. Low Resource Languages
Pashto language was selected for this challenge from the re-
cently completed IARPA Babel program [1], therefore this chal-
lenge is later noted as Babel. In Babel, data from 24 low-
resource languages were collected, which allowed us to focus
on multilingual experiments for feature extraction and acous-
tic modeling. Moreover, substantial improvement of generic
monolingual acoustic models was also achieved. BUT worked
on Babel as part of “Babelon” team (led by BBN).

ASR systems tend to produce system dependent errors,
therefore system complementarity and system fusion are cru-
cial for good performance. Therefore, the fusion of multilin-
gual and monolingual systems trained on different features was
important for our final system.

1.2. Public Safety Communications
The target data for this challenge is taken from dispatcher logs
from the Sofa Super Store Fire (SSSF) that occurred on June 18,

2007 in Charleston and claimed the lives of nine U.S. firefight-
ers (the challenge will be later called SSSF). The data is real
operational data, therefore it cannot be duplicated through con-
trolled scientific collection. It contains sensitive and disturbing
content (e.g. pleas from trapped fire fighters) therefore it has to
be treated respectfully. The data is really challenging due to:

• Various transmission effects between land, mobile and
radio systems.

• Speech under cognitive and physical stress.
• Varying background noise types and levels.

Here, our system was built on a simulated channel (see sec-
tion 3.4 attempting to close the gap between real and clean data.

2. Acoustic modeling approaches
2.1. DNN and BLSTM
Common hybrid Deep Neural Network (DNN) acoustic models
have already been replaced by more accurate Recurrent Neural
Network (RNN) architectures (such as Long-Short Term Mem-
ory – LSTM) and their bi-directional variant (BLSTM) [2] in
state-of-the-art speech recognition systems. Although DNNs
are less accurate than RNN based architectures, they are signif-
icantly faster due to lower complexity and also usually better
generalize to unseen data. Therefore, we used DNNs in our
SSSF system due to expected data mismatch. DNN architec-
ture in this work has 7 layers and 2048 sigmoid neurons in each
layer. Restricted Boltzmann Machine (RBM) pre-training was
used to get better starting point for cross-entropy (XE) training.

The BLSTMs are based on latency-controlled BLSTM ar-
chitecture [3] with 3 bi-directional layers. For each direction,
there were 512 memory units and 300 dimensional projection
layer as suggested in [4].

2.2. Multilingual BLSTM system
Its very natural for humans to borrow information from other
sources when trying to learn a new language. Humans share
the same vocal tract architecture and phonetic systems of lan-
guages overlap, therefore automatic systems should be able to
have the low-level components (feature extraction and partially
also acoustic models) built and trained on various data sources.

During Babel, we verified [5] that multilingual pre-training
for feature extraction is an important technique especially if not-
enough training data is available. Recently, we also extended
multilingual DNN acoustics models [6] to BLSTM [7] and pre-
sented significant gains with adding more languages into acous-
tic model training. Moreover, low-dimensional i-vector based
adaptation was also investigated and detailed in Section 2.3.

Compared to standard BLSTM described in the previous
section, Multilingual BLSTM architecture has the last output
layer divided into parts according to individual languages. Dur-
ing the training, only the part of the output layer correspond-
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Figure 1: Adding i-vector to multilingually pre-trained NN

ing to the target language is activated. Originally [8], this
block-softmax layer, was successfully trained with context-
independent phoneme states as targets. We intended to use the
states of tied context-dependent phonemes, but so far it turned
out to be unfeasible.

The procedure of porting the multilingual NN to a new lan-
guage can be described in the following steps: (1) the final mul-
tilingual layer (context-independent phoneme states for all lan-
guages) is stripped and replaced with a layer specific to target-
language (tied-state triphones) with random initialization. (2)
This new layer is trained for 8 epochs with a standard learning
rate, while the rest of the NN is fixed. (3) Finally, the whole NN
is fine-tuned with 10 epochs, the initial value of learning-rate
schedule is set to 0.5 of the original value.

2.3. Integration of i-vector
Typically, the low-dimensional speaker vector adaptation in-
volves concatenating input feature vectors with speaker-specific
vector that is constant across the whole utterance [9]. This ap-
proach is however not feasible with multilingually pre-trained
NNs as a change of architecture is not practical. Therefore, the
speaker specific i-vector (see section 3.3) is added into input
of the first or the second layer in a similar way as presented
in [10]. The vector is transformed by “ivector NN” in such way
that makes it additive to input layer of the main NN and leds to
improving training criteria (cross-entropy of classified states).
The details are shown in Figure 1. Note, that this system was
naturally used in the Babel part of the challenge.

2.4. Residual memory network
Recently, we have presented Residual Memory Networks
(RMN) [11], which are trying to overcome drawbacks of com-
mon state-of-the-art acoustic models: 1) Recurrent Neural Net-
work architectures are difficult to train [4] when extended to
deeper structures, which are essential for learning more abstract
information. 2) Feed-forward neural networks can be made
much deeper, lead to better generalization to unseen data and
are less prone to over-fitting. But they fail to perform well for
tasks requiring long-term information.

RMN is a variant of DNN where the number of layers de-
notes both the temporal length to learn and the structural depth
as shown in Figure 2. The contributions of RMN are:

• RMNs use a feed-forward architecture inspired by RNN . Dif-
ferent RMN variants were originally proposed in [11]. Fig-
ure 2. shows the variant used in this work, where n-th layer
processes its input as follows: The input vector is transformed
by layer specific affine transformation Wn. The resulting vec-
tor is element-wise summed with the same vector delayed by
N −n+1 frames and further transformed by ”memory com-
ponent” affine transformation. Finally, non-linearity is ap-
plied to produce the layer’s output. Note that the ”memory

Figure 2: RMN: showing memory component and residual con-
nection

component” transformation is shared by all layers.
• RMNs use residual connections after every few layers, which

allows us to increase the network depth, make training faster
and improves the recognition performance. During back-
propagation, the residual lines allows for unimpeded flow of
gradients.

The combination of these two components allows RMN to learn
long-term dependencies and higher level abstractions simulta-
neously in a much simpler and efficient way. Bi-directional
RMN (BRMN) is a simple extension to RMN, where extra
”memory components” are added to make predictions not only
from past frames, but (symmetrically) also from future frames.

Our BRMN network contains 20 layers each having 1024
hidden units and residual connections bypassing over every 5
layers. The training is done with minibatch size 256, learning
rate of 1× 10−3 and l2 regularization constant 1× 10−4.

3. Front-End processing
3.1. Features
Our features are 24 log Mel filter bank energies and various
estimates of fundamental frequency (F0). Four F0 estimators
are used:

• BUT F0 - F0 and probability of voicing (2 coefficients) ob-
tained by our tool implemented according to [12]).

• GetF0 - 1 coefficient obtained using snack library1.
• Kaldi F0 - 3 coefficients (F0 normalized over sliding window,

probability of voicing and F0 delta) [13].
• Fundamental Frequency Variations (FFV) - continuous 7-

dimensional vector representation of F0 variation, obtained
by comparing the harmonic structure of the frequency magni-
tude spectra of the left and right half of an analysis frame [14].

The whole feature vector has 37 coefficients, these features are
later called FBANK F0.

Conversation-side based mean subtraction is applied on the
speaker basis and 11 frames are stacked. Hamming window fol-
lowed by DCT consisting of 0th to 5th base are applied on the
time trajectory of each parameter (37×6) resulting in 222 coef-
ficients at the first stage NN input. These temporal trajectories
(TRAPs) were first investigated in [15, 16] and recently used
also in multilingual BLSTM systems [17]. These features are
later called FBANK F0 TRAP.

3.2. Stacked Bottle-Neck Neural Network
Stacked BNeck Neural Network (SBN) architecture [18] is a
hierarchical composition of two Neural Networks - “Context
NN” and “Merger”. The first-stage NN is trained on top of
FBANK F0 TRAP features and has five hidden layers with
1500 units each except the BN layer. The BN layer is the
fourth hidden layer and its size is 80 neurons. Its BN outputs
(SBN 1stage) are stacked over 21 frames and down-sampled
before entering the second-stage NN. This NN has the same
structure and sizes of hidden layers as the first one. The size
of BN layer is 30 neurons and its outputs are later called SBN

1http://www.speech.kth.se/snack
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features. Neurons in both BN layers have linear activation func-
tions as they were reported to provide better performance [19].

3.3. i-vector extraction
We used 19 MFCC coefficients + energy and their delta and
double delta coefficients, resulting in in 60-dimensional feature
vectors. The silence frames were removed according to Voice
Activity Detection (VAD), after which we applied short-time
(300 frame window) cepstral mean and variance normalization.
The MFCC features were augmented with SBN features trained
trained on Babel languages.

A gender-independent UBM was represented as GMM with
512 diagonal-covariance components. It was trained on the tar-
get language data. Finally, gender-independent i-vector extrac-
tor was trained (in 10 iterations of a joint Expectation Maxi-
mization and Minimum Divergence steps) on the same data-set
as the UBM. More details on i-vector extraction can be found
in [20]. The results are reported with 100-dimensional i-vectors.

3.4. SSSF training data enhancement
Uniqueness of the SSSF target data lead to special processing
of clean speech training data in two main parts:
Adding noise samples: Various noise sounds were downloaded
from freesound.org, about 7 minutes of running engines
were used at the end. Furthermore, we downloaded about 91
minutes of fire engines passing, parades, etc. from YouTube.
Finally, we used SSSF development data segmentation and ex-
tracted 87 minutes of non-speech audio. All the data (185 min-
utes in total) was split into 63 segments (no longer than 4 min-
utes).

Next, each audio file from the training dataset was cor-
rupted by a single, randomly selected, noise segment. The start-
ing position of the noise segment was randomly selected. If end
of file was reached before filling the requested length, the noise
file was re-started. The target SNR was chosen randomly from
the interval −25dB to −7dB.
Passing data through the “SSSF channel”: We have analyzed
the SSSF channel by listening and basic spectral analyses. First,
we tried to simulate the HW (radio station) and ambiance in the
following way:

1. Normalization of the training audio to 0 dB gain.
2. Increasing gain from 0dB to 20dB to introduce clippings.
3. Application of high-pass filter at 300Hz, 600Hz,

1000Hz, and 1500Hz randomly.
4. Application of the phaser effect with sox tool to simu-

late phase distortions.

The fire departments in the U.S. use the proprietary AMBE
codec in their Digital Mobile Radio (DMR). The source code
of this codec is not available. As a replacement we used the
EU version of the TETRA codec [21]. to simulate the effects
of signal coding. We assume that the TETRA codec has simi-
lar characteristics as the AMBE codec. Therefore, after adding
noise and simulating the HW and the ambiance, we passed the
data through the TETRA codec.

4. BABEL system
Our systems were built with several toolkits: We used
STK/HTK [22] toolkit2 for feature extraction. Kaldi [23] was
used for maximum likelihood (ML) Gaussian mixture model

2STK is BUT’s variant of HTK: http://speech.fit.
vutbr.cz/software/hmm-toolkit-stk

(GMM) training. Finally, DNN, BLSTM and RMN networks
are trained using CNTK [24].

GMM based acoustic models were trained to produce
phoneme alignments as the labels for the following NN training.
These models based on cross-word tied-states were trained from
scratch using standard ML algorithm. The baseline GMM sys-
tems have approximately 4000 cross-word triphone tied states
for BABEL and 9100 for SSSF.

Our BABEL system is based on standard ROVER fusion of
two complementary systems:

• Multilingual BLSTM was pre-trained on 11 Babel languages
using BANK F0 TRAP features as explained in Section 4.1.

• Bi-directional RMN acoustic model was trained on target lan-
guage only and on 80 dimensional SBN 1stage features con-
catenated with 100-dimensional ivectors as mentioned in sec-
tions 3.3 and 3.2.

Both systems were trained using XE criteria followed by
state-Minimum Bayes Risk (sMBR) discriminative criteria.

Voice Activity Detection was trained on languages from
section 4.1. It was based on feed-forward Neural Network with
2 outputs and it was used for cepstral mean and variance nor-
malization and for the definition of decoding segments.

Standard 3-gram back-off ARPA model was used for de-
coding. The acoustic model training data transcriptions were
used for the training. In addition, WEB data generated during
Babel program by BBN was added to LM training [25]

4.1. Data
Multilingual BLSTM acoustics models were pre-trained on 11
Babel Languages (all languages available on LDC at that time):
Cantonese, Pashto, Turkish, Tagalog,Vietnamese, Assamese,
Bengali, Hait. Creole, Lao, Swahili, Georgian. The final BA-
BEL system was trained only on given Pashto data-set (cca
99 hours).

Table 1: WER on dev data.

System WER[%]
RMN 42.2
RMN+ivec 41.8
RMN+webLM 42.0
RMN+ivec+webLM (ctm1) 41.4
BLSTM 42.4
MultBLSTM 42.0
MultBLSTM+ivec 40.6
MultBLSTM+ivec+webLM (ctm2) 40.3
Rover (Primary) (ctm1+ctm2) 38.7

Figure 3: Pashto evaluation results. T2 is BUT Primary system.
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4.2. Results
Table 1 presents performances on development (dev) set. We
observed tiny (0.4%) gain from using multilingual BLSTM
(MultBLSTM) over the monolingual one. It is probably due
to the sufficient amount of training data (92 hours). RMN pro-
vides performance similar to MultBLSTM as expected and the
ROVER combination of both systems provide an impressive
gain of 1.6% absolute. It is a proof of our assumption that the
systems are highly complementary due to the different architec-
tures and features. This system also performed favorably on the
eval data (43.6%) as compared to the other evaluation partici-
pants (see figure 3).

5. SSSF system
The system was build on top of the GMM based alignments gen-
erated by mix-up training in similar way to the Babel case (sec-
tion 4). It contains 9100 cross-word triphone tied states. The
alignments were generated using GMM-HMM system trained
on the clean data and were reused for the systems trained on the
noised data (enhancement described in section 3.4).

We experimented with two types of acoustic models:

• DNN trained on top of SBN 1stage features generated for the
“Full” data set (see later in sec. 5.2). Note, that the NN based
feature extractor was taken from our ASR system already pre-
trained for telephone speech to save training time. No sMBR
training was used.

• BLSTM was trained with FBANK F0 features as input. Due
to the time limitations, the training run only on “10pers-
peaker” data set (see later in sec. 5.2). The final models were
trained in 11 epochs with XE criterion followed by one epoch
with sequence state-Minimum Bayes Risk (sMBR) objective
function.

5.1. Voice Activity Detection
Voice activity detection was re-used from RATS project, as the
channel is similar to SSSF data. It was performed by NN with
an input of block of log Mel filter bank outputs with 300ms
context width. The NN has 18 outputs: 9 for speech and 9 for
non-speech, each corresponding to one of the channels (source
plus 8 re-transmitted) from RATS data. HMM with Viterbi de-
coding was used to smooth out and merge the outputs to speech
and non-speech regions. This NN was trained on RATS data
defined for the speech activity detection (SAD) task [26].

5.2. Data
Various English corpora were used for acoustic model training:
English Fisher1+2, Switchboard 1 Release2, Call Home En-
glish, AMI and ICSI-meetings. This “Full” set had 2240 hours.
Next, we created a 230 hour subset,”10perspeaker”, where only
10 sentences were selected per speaker to limit the training time.
Language Model was 3-gram trained on various corpora with
different weights:

Data # Vocab weight
Fisher (Part 1 + Part 2) 21.2M words 0.03
CNN transcripts 64.5M words 0.02
AMI meetings 0.8M words 0.01
ICSI meetings 0.8M words 0.01
Switchboard + CallHome 3.5M words 0.01
Open Subtitles 61.1 M words 0.24
SSSF dev 2.6k words 0.65

We split SSSF dev set into two parts and tuned the weights in-
dependently. Then we averaged them and did some small hand
corrections (rounding). We used CMU pronunciation dictionary

Table 2: WER on dev data.
System VAD WER[%]
DNN STM 63.6
DNN RATS 65.3
BLSTM STM 63.2
BLSTM RATS 66.1

Figure 4: WER on eval data. T2 marks BUT system.

and limited their vocabulary to 48k words (original vocabulary
size was about 220k words) by dropping the infrequent words.
Next, we applied perplexity pruning (p = 1 × 10−8) to limit
the size of the language model.

5.3. Results
Table 2 presents the performances on the development data set.
The significant difficulty of the data is reflected in the word
error rates. The lowest WER in the table is 63.2% obtained
with BLSTM with reference segmentation. Note, that the dev
set transcriptions were used for the language model training as
well. In more detailed analyses, we found that dispatcher logs
are transcribed reasonably and most of the errors are coming
from the firefighters. It can be attributed to the Lombard effect
caused by the specific environment and the different speaking
style (not following any grammar). The automatic segmenta-
tion results in performance 1.7-2.9% worse than the reference
one. Finally, we decided to submit DNN system as it performs
slightly better than BLSTM one for the automatic segmenta-
tion. Figure 4 presents evaluation results for all the participat-
ing teams. Our team performed the best although the word error
rates are still very poor.

6. Conclusion
The paper presented our effort for OpenSAT pilot evaluation
2017. We participated in two domains: Low Resource Lan-
guages and Public Safety Communications. In the first one,
we confirmed the importance of creating highly complemen-
tary systems as well as using multilingual approaches. In the
second one, we presented specific training data enhancement
approach, which led to the best performing system in the eval-
uations. Nevertheless, the performance of this system is still
very poor, which leaves us space for experimenting with more
advanced adaptation techniques in the future.
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