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Abstract

Voice-based systems are an essential approach for engaging di-
rectly with low-literate and underrepresented populations. Pre-
vious work has taken advantage of high-resource speech recog-
nition technology for low-resource language speech recogni-
tion through cross-language phoneme mapping. Unfortunately,
there is little guidance in how to deploy these systems across a
range of languages. We present a systematic exploration of four
source languages and five target languages to understand the
trade-offs and performance of different source languages and
training techniques. We find that one can improve recognition
accuracy by selecting a source language that has similar linguis-
tic properties to that of the target language. We also find that the
number of alternative pronunciations per word and gender of
participants also impact recognition accuracy. Our work will al-
low other researchers and practitioners to quickly develop high-
quality small-vocabulary speech-based applications for under-
resourced languages.

Index Terms: speech recognition, low-resource languages,
human-computer interaction, cross-language phoneme map-
ping, spoken dialog systems, SALAAM, spoken language pro-
cessing, nutrition

1. Introduction

Across the world, low-literate users have been categorically
excluded from many of the benefits of digital and computing
technology [1]. Globally, 750 million people are considered
low-literate, with 27% of the world’s low-literate adults coming
from sub-Saharan Africa. Traditionally, there have been three
main approaches to improving the use of digital technology
amongst low-literate users: mediated input [2], where a liter-
ate user assists a low-literate user; graphical user interfaces [3],
which rely heavily on iconography and graphical representa-
tions as opposed to text; and speech-based systems [4, 5, 6],
which allow users to interact using audio and voice. The lat-
ter has the benefit of reaching people directly without the need
of third party (important for sensitive information) or a smart-
phone (critical as smartphone penetration in Africa is still lim-
ited outside urban centres) for a graphical interface. However,
voice-based systems are largely constrained to major languages,
which limit their utility for much of Africa and other multilin-
gual societies. There is a need to develop ways to adapt voice-
based systems to be able to reach low-literate populations in
their mother tongue.

Automatic speech recognition (ASR) plays a key role in
the design and development of speech-driven interfaces for spo-
ken dialogue systems. Oftentimes, spoken dialog systems and
ASR technologies can be used as tools to bridge the gap be-
tween the low-literate populations of developing regions and
information technology [7]. With the widespread adoption of

the mobile phone in low-income countries across the world,
the use of speech technology represent an increasingly feasi-
ble approach to directly reach the large low-literate populations
in low-income countries [8].

However, the majority of languages spoken in these set-
tings lack adequate resources needed to train speech recogni-
tion engines [9]. Training a speech recognition engine is expen-
sive and demands a deep understanding of speech technology
and linguistic expertise in the local language of interest, all of
which are more difficult to find in regions with low-resource
languages [7, 9, 10]. These constraints makes it difficult to de-
velop applications suitable for the populations who need them
most.

However, recent work has demonstrated that a speech rec-
ognizer trained in a high-resource language (HRL)—such as En-
glish or French—can be repurposed to achieve small-vocabulary
automatic speech recognition in a low-resource language (LRL)
by using similarity of sounds (phonemes) between the two lan-
guages [11]. This process is known as cross-language phoneme
mapping. Using this technique, a pronunciation lexicon repre-
senting the pronunciation of target language word types based
on the phonetic alphabet of the HRL is generated and used
to achieve speech recognition over the LRL vocabulary [10].
These pronunciation maps could be handwritten, but they de-
mand the use of an expert linguist who is fluent in both the
source and target languages but often do not yield high recogni-
tion accuracy [10]. Therefore, processes of automatically creat-
ing cross-language phoneme mappings between languages were
developed [12, 13, 14], eliminating the requirement of an expert
linguist. This technique has been used in a number of informa-
tion, communication, and technology for development (ICT4D)
projects in the health sector [4], agriculture sector [8, 6] and for
research purposes [14, 10]. Despite the development and use
of the automated cross-language phoneme mapping, there re-
mains little guidance of how the approach behaves in different
conditions, i.e., different source-target language pairings, and
training techniques.

The aim of this paper is to report on an investigation into
the performance and tradeoffs of different source languages and
training techniques for speech-based applications that use cross-
language phoneme mapping.

2. Related Work

Our work builds directly on previous work, namely the Speech-
based Automated Learning of Accent and Articulation Mapping
(SALAAM) [12, 11] algorithm, as implemented in the open
source tool Lex4All [14, 13].

The SALAAM technique was developed to facilitate small-
vocabulary speech recognition for under-resourced languages
by using cross-language phoneme mapping and a high-resource
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language speech recognizer [10].

The primary idea behind the SALAAM technique is to find
the best pronunciation sequence for a given word in a target
language from one or more audio samples by using a source
language speech recognizer to perform phone decoding (decod-
ing by phoneme) [10]. Since most commercial speech recog-
nizers do not directly support phone decoding, the SALAAM
technique uses a specially-designed grammar to mimic phone-
decoding [10, 13]. This is achieved by creating a recognition
grammar representing a phoneme super wildcard to guide pro-
nunciation discovery. The grammar enables the speech recog-
nizer to break down a word in the target language into a series
of one to ten ‘sounds’. Each of these ‘sounds’ are then matched
a sequence of one to three source language phonemes [10, 12].
The SALAAM heuristic accepts, as input, a set of audio sam-
ples of the same word or short phrase and a requested number
of k pronunciations. Using an iterative process, the heuristic
builds a set of phoneme strings, returning the top-k performing
pronunciations based on the phonetic inventory of the underly-
ing speech recognizer [10, 12]. This results in the pronunci-
ation(s) of each word or phrase being represented as a set of
phoneme sequences. For example, using SALAAM with the
English (US) source language to generate the top three pronun-
ciations for Mkate, the Kiswahili word for bread, would result
in the following phoneme sequences: M K AA T I, M K AA CH
I, or M K AH CH E, which are then written to a lexicon file that
is used later during the speech recognition process.

Previous studies have only used English (US) and French
(France) as the source languages, with a maximum of 10 alter-
native pronunciation per target language word type [10, 12, 11,
13]. We investigate the performance and tradeoffs of different
source languages and training techniques using four source lan-
guages: English (US), French (France), German (Germany) and
Mandarin (China), and five target languages: English (South
African), Sotho, Afrikaans, chiShona and Kiswabhili. Three of
these languages—English, Sotho and Afrikaans—are drawn from
the 11 official languages of South Africa [15], while chiShona is
spoken widely in neighboring Zimbabwe and Kiswahili is spo-
ken widely across East Africa. Afrikaans and English have Eu-
ropean roots and English(South Africa) is used as a control lan-
guage. Sotho, Chishona and Kiswahili are indigenous to Africa
and are representative of the Bantu language family. Bantu lan-
guages are a group of languages indigenous to Africa, from the
south of Nigeria, covering most of central, east, and southern
Africa [16]. There are Bantu language speaking communities
in 27 of the continent’s 54 countries, representing about 240
million speakers. The number of languages ranges from 300
to 680, depending on the criteria used to differentiate between
dialects and languages [16]. They are agglutinating, have con-
cordial agreement systems, and all nouns are assigned to a noun
class [16].

3. Methodology

The study had two main phases: a data collection phase, where
we recorded over 50,000 words from native language speak-
ers; and an analysis phase where we ran a series of experiments
across the dataset.

3.1. Data collection

One hundred four (53 female and 46 male) native language
speakers were recruited for the five target languages. Partic-
ipants were undergraduate students at the University of Cape
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Town (UCT) and were recruited via e-mail and through word of
mouth. Participation in the study was voluntary, and the study
was granted ethics approval through the IRB at UCT.

We developed a vocabulary of 100 word types in English,
based primarily on words commonly used with agriculture
and nutrition, in addition to standard words such as numbers,
months and days of the week. The vocabulary included a mix-
ture of words and short phrases (collectively called word types).
The selected word types reflected the words and phrases likely
to be used in our intended use case. A vocabulary size of 100
word types per target language provided a basis for ease of sta-
tistical significance assessment [13]. The vocabulary was then
translated to the other target languages with the aid of Google
Translate, and validated by native speakers. For each word type,
we collected five audio samples recorded by each of the speak-
ers [12]. The recordings were done in a quiet room using a mo-
bile phone recording at 44.1kHz. A mobile phone was used for
data collection because they are prevalent in developing regions
and the audio quality is similar to what one expects when users
are interacting with a spoken dialog system in this context [12].
The mobile phone also allowed us to maintain the same audio
quality throughout the entire data collection process and ensure
a uniform dataset.

3.2. Data analysis

We conducted three experiments to evaluate performance re-
lated to the sensitivity of: (1) source language, (2) training tech-
nique and (3) number of pronunciations. Each of these factors
may affect the training of the phoneme, and ultimately the abil-
ity for the voice system to accurately recognize the words.

1. Source language impact on recognition accuracy:
the generation of pronunciation lexicons that map each
term from a target language to one or more sequences
of phonemes in the source language depends on the
phonemes the high resource language speech recognizer
can model [10, 12, 7]. Therefore, we hypothesized
that if the target and source languages were of simi-
lar phonemic properties then the overlap between the
source and target language phoneme inventory would be
maximized. This would in turn reduce the difficulty of
phoneme mapping by finding better pronunciations and
yielding better recognition accuracy.

. Effect of training technique on recognition accuracy
with respect to gender: we hypothesized that, for appli-
cations developed using cross-language phoneme map-
ping, gender may have a confounding effect on recogni-
tion accuracy, as it has in previous studies [17]. Gender-
sensitivity may be due to the different acoustic proper-
ties of pronunciation between men and women, which
may affect the audio signal interpretation by the under-
lying speech recognizer [17]. We evaluated recognition
accuracy across three experimental setups: same-gender
pairs (training and testing datasets comprised of a single
gender), multi-gender pairs (mixed-gender training and
testing datasets) and cross-gender pairs (training with a
single gender and testing with the other gender).

. Impact of number of alternative pronunciations on
recognition accuracy: we hypothesized that increas-
ing the number of alternative pronunciations would im-
prove recognition accuracy, as demonstrated in previous
work [12], up to an inflection point, after which recogni-
tion accuracy would decrease. We expected that the re-



duction in accuracy improvements at the margin would
occur due to the inevitable overlap of alternative pronun-
ciations for words with similar phonetic structure [10].

3.3. Experimental Setup

We used the SALAAM method as implemented in the open
source tool Lex4All [14]. To test hypothesis (1) source lan-
guage, we used four source languages recognizers: English
(American), French (France), Mandarin (Mainland China) and
German (Germany), selected because of availability of phonetic
alphabets. We accessed these recognizers through Microsoft
Speech Platform SDK 11 [18], a technology developed by Mi-
crosoft for server-side recognition of telephone-quality audio.
We used this system because of its robustness and to reproduce
the experimental environment of previous studies [14, 12, 10].
No additional modifications to the underlying models of this
system were made —our goal was to test a system that was fea-
sible for user groups to implement without technical modifica-
tions.

With respect to hypothesis (2) training technique, for each
target language, we created three training datasets: male-only,
female-only and mixed-gender. We created the single gender
datasets by randomly selecting four participants per gender.
The mixed-gender datasets were made up of 2 male speakers
and two female speakers from the male-only and female-only
datasets, all of which were randomly selected. We created a
testing dataset by randomly selecting two female and two male
speakers whose data were not used to form any of the training
datasets. We used these datasets to evaluate the effect of train-
ing technique on recognition accuracy with respect to gender.
The total number of speakers per dataset was capped to four
for uniform testing conditions across all target languages. The
randomized selection of speakers for each of these datasets is
achieved using the ‘sample’ function from the R software envi-
ronment [19].

To investigate hypothesis (3) number of pronunciations,
during the training phase, we generated pronunciations for each
target language word type using audio data from the partici-
pants whose audio samples formed the single-gender and multi-
gender datasets. We achieved this by using the SALAAM
method [14] and each of the four source language recognizers.

For each target language and source language pair, we ob-
tained lexicon pronunciation files for the female-only (single-
gender), male-only (single-gender) and multi-gender training
sets. To address our three hypotheses, we used the pronun-
ciation lexicons generated during training, with respect to the
source language, target language and training techniques used,
to perform recognition accuracy evaluation. In each instance,
we used lexicon files containing 5, 10, 20, 40, 60, 80 and 100
alternative pronunciations per word. When a word contains
multiple alternative pronunciations, the underlying speech rec-
ognizer will match any of those pronunciations without mak-
ing any distinction or preference among them [10]. We used
the R software environment [19] for statistical analysis and
Seaborn [20] for data visualization using the Python program-
ming language [21].

4. Results & Discussion

We present results obtained from investigating the impact of
source language, effect of training technique with respect to
gender and impact of the number of alternative pronunciations
on recognition accuracy.
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4.1. Source language effect on recognition accuracy

Figure 1 shows the results obtained from this experiment. We
see that using English (US) as the source language produced
the best results for all target languages with an exception of
Sotho, which had a higher recognition accuracy when the source
language was Mandarin.

Recognition accuracy vs Target language by source language

EnglishSA Kiswahili Chishona Afrikaans Sesotho
Target Language
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Sourcelanguage
B English
B German
BN French
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Figure 1: Recognition accuracy versus Target language by
source language

The results were further analyzed using several statistical
methods. A Shapiro-Wilk test determined our data was not nor-
mally distributed. As a result, we used the Kruskal-wallis test,
a nonparametric test, for statistical analyses. The first evalu-
ation looked at the results irrespective of the target language,
we achieved this by aggregating the results based on the source
language and running statistical analyses on them. The tests re-
vealed a significant overall effect of source language on recog-
nition accuracy (z2(3) = 110.29,p < 2.2e — 16), supporting
our hypothesis. Performing Post-hoc pairwise comparisons us-
ing the Wilcox sum rank test with Bonferroni correction showed
a significant effect of source language on recognition accuracy
among all source-target language pairs except when French and
German were used as source languages. Thus our findings sug-
gest that there are optimal pairings between source and tar-
get languages for phoneme matching. English(South Africa)
recorded the highest recognition accuracy with English(US) as
a source language. This is what we expected as the languages
share the same phoneme inventory. Contrary to previous find-
ings that used the SALAAM technique [10], our findings seem
to indicate that choosing a source language whose phoneme in-
ventory overlaps more with the target language would yield sig-
nificantly higher recognition accuracy. Follow up work would
do well to trace the linguistic roots of the languages to try to de-
termine which properties are most important for matching and
thus can create more general predictions for which source lan-
guage is best suited for particular target languages, as this was
beyond the scope of the current paper.

4.2. Impact of technique on recognition accuracy

We evaluated recognition accuracy for: same-gender pairs
(single-gendered training and testing datasets comprised of a
single gender), multi-gender pairs (a mixed-gender training
dataset was used) and cross-gender pairs (single-gendered train-
ing and testing datasets comprised of different genders).



Recognition accuracy vs Technique (English-US)
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Figure 2: Recognition accuracy versus Technique

Figure 2 shows a box plot representing our findings when
English (US) is used as a source language. The same-gender
technique recorded the best recognition accuracy followed by
multi-gender and cross-gender techniques.

A Shapiro-Wilk test determined our data was not normally
distributed, so a Kruskal-wallis test was again used to perform
statistical analyses on the data. It revealed an overall significant
difference in recognition accuracy among the different tech-
niques ((6) = 36.69,p < 2.021le — 06), supporting our
hypothesis. This suggests that when using this approach it is
important to know the gender composition of the target speaker
group. Despite recording the highest recognition accuracy, the
same-gender technique results did not significantly differ from
those obtained using the multi-gender technique. This implies
that either technique could be used, however, the multi-gender
technique would be better as it would be more robust against a
gender bias. These findings underscore the need for researchers
and practitioners to gender into consideration when developing
datasets that are to be used with the SALAAM method.

4.3. Impact of pronunciations on recognition accuracy

Figure 3 shows a series of figures showing how recognition
accuracy varies with alternative pronunciations with respect to
source language when English (South Africa) is used as a target
language .
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Figure 3: Recognition accuracy versus number of alternative
pronunciation

For all source languages, we observed an increase in recog-
nition accuracy with an increase in alternative pronunciations
up to 20 alternative pronunciations. However, from 40 pronun-
ciations onwards, we observed a small decline in recognition
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accuracy for both English (US) and Mandarin. The results ob-
tained using English (US) and Mandarin as source languages
appear to support our hypothesis. However, we did not observe
a decline in recognition accuracy for French and German as the
number of alternative pronunciations increases. Running statis-
tical analysis revealed that pronunciation only had a significant
effect on recognition accuracy for the English (South Africa)
- French source-target language pair (x2(6) 36.69,p <
2.021e — 06). These results suggest a source-language depen-
dent behavior. Our observations regarding the relationship be-
tween multiple pronunciations and recognition accuracy do not
differ from previous studies [12]. Recognition accuracy is gen-
erally improved with an increase in the number of alternative
pronunciations per word type. However, this improvement also
comes at a cost in terms of system response time during use.
The greater the numbers of alternative pronunciations per word
type, the larger the search space and, consequently, the longer
the response time. Presented in table 1 is a summary of our
observations of mean evaluation time for 2000 English (South
Africa) word type evaluations with varying alternative pronun-
ciations. There appeared to be a roughly linear relationship be-
tween the number of pronunciations used and the amount of
time required for the system to match words.

Table 1: Evaluation time vs number of pronunciations

Number of pronunciations | Mean evaluation time (Minutes)
5 2:04s

10 2:04s

20 4:04s

40 8.45s

60 13:15s

80 17:24s

100 21.04s

5. Conclusions and Future Work

This paper explored the performance of using cross-language
phoneme mapping for the development of speech based applica-
tions. We used four source languages and five target languages.
In the first experiment, we establish that source language choice
has a significant impact on recognition accuracy. That recogni-
tion accuracy can be improved if a target and source language
share similar phonemic properties. In the second experiment,
we establish that recognition accuracy generally improves with
the use of multiple pronunciation but at the expense of a longer
response time. Lastly, we find that gender also has a confound-
ing effect on recognition accuracy for speech-based applications
developed using the SALAAM technique. The results show that
using the single-gender training technique yields the best recog-
nition accuracy, though not significantly different from those
obtained using the multi-gender technique. This study repre-
sents a next step into using phoneme mapping for voice recog-
nition of under-served African languages. Given the diversity of
languages and code-mixing behavior—such as Sheng in Kenya,
which is a combination of Kiswahili and English—-to Bantu lan-
guages with click-sounds—such as isiZulu and isiXhosa—there
is still substantial work to be done. However, a systematic ap-
proach based on a typology of linguistic properties and future
use cases could move this technique quickly into use, allowing
a much greater segment of the population to be reached and un-
derstood.
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