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Abstract
Recent interest in intelligent assistants has increased de-

mand for Automatic Speech Recognition (ASR) systems that
can utilize contextual information to adapt to the user’s prefer-
ences or the current device state. For example, a user might be
more likely to refer to their favorite songs when giving a “music
playing” command or request to watch a movie starring a par-
ticular favorite actor when giving a “movie playing” command.
Similarly, when a device is in a “music playing” state, a user is
more likely to give volume control commands.

In this paper, we explore using semantic information inside
the ASR word lattice by employing Named Entity Recognition
(NER) to identify and boost contextually relevant paths in or-
der to improve speech recognition accuracy. We use broad se-
mantic classes comprising millions of entities, such as songs
and musical artists, to tag relevant semantic entities in the lat-
tice. We show that our method reduces Word Error Rate (WER)
by 12.0% relative on a Google Assistant “media playing” com-
mands test set, while not affecting WER on a test set containing
commands unrelated to media.
Index Terms: speech recognition, contextual speech recogni-
tion, named entity recognition

1. Introduction
A contextual ASR system uses real-time signals from the
speaker’s context to improve recognition accuracy. Bringing
context into ASR bridges the gap between a recognizer which
models an average speaker in normal conditions and one that
is adapted to personal and situational context. While many
techniques are available to take advantage of context, we focus
here on language model (LM) rescoring. Rescoring adjusts LM
probabilities in real time based on contextual signals, and allows
targeted adjustments without the need for training a context-
specific LM. Work has been done on incorporating a variety of
contextual signals into ASR: the device type being used, the
history of the speaker’s queries or actions, device state, location
and dialog state, among others [1, 2, 3].

In this paper, our contextual ASR system uses a two-pass
LVCSR (large-vocabulary continuous speech recognition) rec-
ognizer containing a first-pass decoder similar to the system de-
scribed in [4] with a first pass LM and a more accurate second-
pass rescoring language model LM. The ASR system can use
n-gram models or neural networks, our only requirement is that
the decoder outputs the set of possible hypotheses in the form
of a word lattice, which is an efficient weighted automaton rep-
resentation of speech hypotheses [5]. We report result on the
system that uses n-gram models.

Various rescoring systems have been described in the lit-
erature. They can use weighted contextually relevant n-grams
[6, 7] and can contain contexually added dynamic classes [8].

Such systems perform on-the-fly n-grams rescoring during first-
pass decoding [9]. Using semantic information for contextual
ASR is a topic that has attracted recent interest [10].

In this paper, we describe a new method for bringing se-
mantic contextual information into ASR. Our method identifies
semantically relevant entities and phrases in the word lattice and
provides a mechanism for rescoring them.

Our proposed semantic rescoring system can effectively an-
notate (tag) and rescore millions of semantic entities. For ex-
ample, we can rescore broad collections such as the set of all
known songs including international and obscure songs, as well
as contractions or colloquial ways of referring to songs. We
refer to these collections as semantic classes. We use a Se-
mantic Lattice Tagger [11] to annotate semantic classes directly
in the ASR word lattice using a modification of techniques
from Speech Information Extraction and Semantic Interpreta-
tion [12, 13, 14, 15]. Our approach allows restricting tagging
to just a subset of contextually relevant semantic classes and
entities. After tagging, thousands of n-gram contexts may be
used to rescore each semantic class, resulting in a rescoring sys-
tem that supports billions of unique n-grams in real-time. Our
approach uses FSTs (Finite-State Transducers) and works with
readily available libraries such as OpenFST [16] and OpenGRM
[17].

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the system’s components and
how they interact. Section 3 provides a description of the indi-
vidual components: how the semantic tagging model is trained
(3.1) and applied (3.2), Section 4 describes how rescoring is
performed on a word lattice containing semantic tags. Exper-
imental results are described in Section 5 and conclusions in
Section 6.

2. System Design
In this section we describe the main components of the contex-
tual ASR system that uses semantic lattice rescoring.

Figure 1: Semantic Lattice Rescoring Contextual ASR system.

As shown in Figure 1, ASR first-pass decoding outputs a
word lattice, an acyclic weighted graph over words that effi-
ciently encodes proposed hypotheses of the user’s utterance.
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Taking this lattice as input, the Semantic Lattice Tagger in-
serts open/close decorator tags around likely contextually rel-
evant semantic entities in the lattice. Each inserted decorator
pair denotes a semantic class (such as <song> </song> or
<musical_artist> </musical_artist>). Multiple
(ambiguous) semantic interpretations are allowed and expressed
as parallel paths through the same words, surrounded by differ-
ent decorator tags.

The next step is rescoring of the semantically-tagged lat-
tice based on user-specific context. The hypotheses that con-
tain a meaningful phrase involving an anticipated class of se-
mantic entities are rewarded. For example, a speech recogni-
tion task intended for playing music could look for <song>
or <musical_artist> and rescore “play $SONG” or
“play $SONG by $MUSICAL_ARTIST”. This would im-
prove recognition quality in scenarios where such inputs are
more likely than average. Similar to the semantic tagging step,
rescoring must be done efficiently on the entire lattice. With
semantic rescoring applied, the modified lattice is passed to
second-pass rescoring used by the recognizer. As a second-pass
rescorer is not expected to know about semantic decorator tags,
they can be either removed or temporarily hidden.

3. Semantic Tagger
3.1. Training

This section explains how the Named Entity Recognition (NER)
model used by the Semantic Lattice Tagger is trained. The com-
plete algorithm is described in [11] and a summary provided
here.

We start with an existing large-scale structured knowledge
model, albeit whose latency and memory requirements make it
impractical for real-time use in ASR. Treating this model as an
oracle that can annotate training sentences in bulk, we distill
the model into a much smaller FST statistical n-gram model
that fits in memory on a single machine (see Figure 2).

Figure 2: A system for training the semantic lattice tagger
model.

The resulting n-gram language model represents the prob-
ability of a sentence containing optional decorator tags, for ex-
ample:

how tall is <alternative_rock_artist> taylor
swift </alternative_rock_artist> ?

Transition costs on each arc represent negative log probabil-
ities as described in [5]. The model represents the joint proba-
bility of seeing the sentence together with the tags, i.e., P (s, t),
where s is a sentence and t is a choice of zero or more tags
representing a distinct semantic interpretation of s.

While processing the training data, we also build a his-
togram of observed semantic entities sorted by their frequency
over the training corpus. Examples of captured entities are

shown in Table 1. The long tail is rich with international enti-
ties, contractions, alternative wordings, alternative or incorrect
spellings, and obscure entities; which can be valuable to the rec-
ognizer. In the next section, we show how this histogram is used
to control the search space of semantic interpretations.

Percentile Sample Class Sample Instance

1st tv_series game of thrones
10th tv_program CBB UK
25th actor aiysha hart
50th composer stefan djuric
90th film billy and mandy boogey

adventure

Table 1: Examples of media-related semantic entities from the
head to the long tail of the frequency distribution. Stefan Ðurić
is a Serbian musician; the name of the animated film Billy &
Mandy’s Big Boogey Adventure is contracted in the last exam-
ple.

3.2. Lattice Tagging

At recognition time, the Semantic Lattice Tagger inserts dec-
orator tags into an untagged ASR word lattice. As an acyclic
graph, the word lattice can represent exponentially many hy-
potheses relative to its size; its richness makes it desirable to
perform NER directly on the lattice using FST operations rather
than extracting n-best hypotheses to process individually.

The tagging algorithm is described in more detail in [11];
however a brief summary is provided below.

Introduce tags: Given the word lattice L with weights re-
moved, identify every possible entity in it using an FST gram-
mar of the top-N million entities observed during model train-
ing.

Lexpanded ← rmweight(L) ◦ C (1)

Where the ◦ operator denotes FST composition. The gram-
mar constrainer FST C expands the lattice, injecting balanced
left and right decorator tags around any matching entities. As
a result, parallel, non-nested paths are created for ambiguous
entities that may belong to multiple classes (or to no class).

Note that we can restrict our generation to just a rele-
vant subset of classes and/or entities by having task-matched
grammar constrainers at our disposal. This reduces our search
space and allows fine-grained control over what gets rescored
or doesn’t.

Rank the taggings: Assign our proposed tags conditional
probabilities P (t|s), so that we can find the most likely tag-
ging for any word sequence in the lattice. Note that our n-gram
model is not a conditional but rather a joint probability model,
P(s, t). We calculate the conditional probability over an input
lattice by using Bayes’ rule:

P (t|s) = P (s, t)

P (s)
(2)

We getP (s, t) by composing the expanded lattice from step
(1) with our n-gram model FST:

Ljoint(s, t)← Lexpanded ◦ P (s, t) (3)

We get the marginal P(s) by deleting the decorator tags from
P (s, t) and then determinizing and minimizing the lattice to
sum probabilities of paths through the same words:
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Pmarginal(s ∈ L) =
∑

t

Ljoint(s, t) (4)

Finally, we perform division by the marginal P (s) as a mul-
tiplication (i.e., FST composition) by its reciprocal. The recip-
rocal of P(s) is trivially computed by reversing the sign of its
negative-log probability arc weights:

P (t|s)← Pmarginal(s)
−1 ◦ Ljoint(s, t) (5)

Optimize: max-normalization is a way of dealing with
probability fragmentation between possibly many semantic in-
terpretation of the same words. It is performed by scaling up
tagging probabilities, so the optimal tagging(s) of every hypoth-
esis has a modified probability P ′=1. This effectively degener-
ates probabilities into penalty costs for non-optimal taggings;
this technique works well in practice because ASR’s goal is to
pick the best hypothesis regardless of tags. This approach was
successfully used in ASR pronunciation modeling [18, 19]).
Pruning is also performed, deleting taggings that trail too far
behind the optimal tagging to avoid clutter. This is described in
[11].

Lastly, compose the conditionally tagged tattice with the
original ASR lattice, such that each resulting hypothesis’ prob-
ability is the product of its first-pass decoder probability and the
max-normalized conditional tagging probability:

Lcombined = PT (t|s) · P1st(s) (6)

Note that overall strategy described here (expanding a word
lattice using an entities grammar and then ranking them with
a statistical model) has been successfully used for Speech In-
formation Extraction and Semantic Interpretation tasks [12, 13,
14, 15]. What makes our approach different is the goal (contex-
tual ASR accuracy) and algorithms implemented to support that
goal: computing conditional probabilities, performing max-
normalization, and modeling annotations as standalone deco-
rator words instead of as tags attached to words. This avoids
dramatic increase of vocabulary size when scaling to hundreds
of classes and millions of entities, and allows some semantic
modeling efficiencies.

4. Rescoring Using Semantic Tags
After decorator tags with probabilities are introduced into the
lattice, the next step is to rescore using the tags. Based on the
use case, a set of n-grams that include nonterminals referring to
semantic classes are provided. For example, a music-playing
application may provide play $SONG. When a lattice path
matches one of the n-grams, we apply a cost adjustment to that
path. We must also determine where and by how much to adjust
lattice arc scores to achieve good quality results.

We use a simple approach to adjust the path costs when
one of the n-grams is encountered in the lattice. We subtract a
fixed amount of negative log-probabilty (equivalent to increas-
ing the likelihood) on the arc containing the open decorator tag,
so that the path cost through that phrase is reduced. For our ini-
tial experiments we optimized this score reduction over a dev
set. In future applications we intend to use automated learning
of rescoring models, as described in [7].

Similar to semantic tagging, an efficient approach requires
operating at the word lattice level, therefore we use FST compo-
sition for this task. This composition has a custom implementa-
tion; on the FST encoding the n-grams to rescore, we introduce

two labels ϕ and ρ. The ϕ label indicates that the arc is fol-
lowed whenever there is a failure to match any other arc leaving
the state. When an arc with ϕ is followed, nothing is consumed
in the lattice and nothing is emitted from the composition. Sim-
ilarly, ρ is also followed when no other arc matches, but in this
case the lattice arc is consumed and the composition emits the
lattice arc unchanged. When the complete n-gram including the
semantic entity has been matched, we apply the score boost, α.
All other arcs leave the score unchanged. Encoding the example
n-grams play $SONG, and play some $COMPOSER as an
FST looks like figure 3.

Figure 3: A simple rescoring model for semantic entities.

There is one remaining issue to solve, which is to match
the decorator tag span from the lattice to the non-terminal form
in the rescoring n-grams. E.g., the lattice would contain the
label sequence play <SONG> thriller </SONG>, and
we need to match play $SONG. To achieve this, we wrap the
arc matching logic on the rescoring FST to map the decorator
tag to the non-terminal before matching the label. The remain-
ing lattice arcs until the end of the decorator span are emitted
unmodified. Table 2 shows how each lattice label would be
looked up, and what the resulting score change would be.

Lattice label play <SONG> thriller </SONG> now

Match play $SONG {none} {none} now

Output / boost play / 0 <SONG> / α thriller / 0 </SONG> / 0 now / 0

Table 2: Example matching between lattice FST arcs and
rescoring FST arcs

In practice we implement all of these customizations using
the OpenFst [16] library, making use of composition filters and
FST arc matchers. A complete discussion of this is outside the
scope of this paper, but the interested reader can refer to [20].

5. Experimental Results
In this section, we evaluate the contextual ASR system that uses
semantic lattice tagging and rescoring. The system is evaluated
on the test set consisting of transcribed utterances and on live
Google Assistant traffic. Note that a detailed evaluation of the
Semantic Lattice Tagger in isolation, including its faithfulness
to the oracle semantic knowledge model and its tagging latency,
is included in [11]. In this paper, we focus on end-to-end per-
formance in a production ASR environment.

5.1. Evaluation on Transcribed Test Sets

We evaluate performance on two test sets, a test set consist-
ing of media playing commands (containing 1,289 utterances)
and a test set consisting of non-media queries (conatining 2,204
utterances). 88 patterns corresponding to audio entities were
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used for rescoring, such as “play $MUSICAL_ARTIST
$SONG”, each containing one or more of 11 semantic classes
listed in Table 3.

film composition creative_work
song entertainer musical_album
composer tv_program musical_artist
concerto fictional_character

Table 3: Semantic classes used in rescoring patterns.

Hypotheses in the tagged ASR lattice matching rescoring
patterns were rescored by -3.0 in negative-log space, a value that
was optimized over a held-out set containing both in-domain
and out-of-domain utterances. Results are shown in Table 4. We
saw improved accuracy on the play media test set while no re-
gressions were observed on the non-media test set. Regressions
due to false positive semantic interpretations were rare due to
the fact that we only rescore a semantic entity when matching a
non-trivial pattern.

Test set Number of WER WER (resc.) Change
utterances [%] [%] [%]

Media 1,289 5.00 4.40 -12.0
Not media 2,204 8.80 8.80 0.0
Combined 3,493 7.40 7.18 -3.0

Table 4: Test set with Assistant media and non-media utter-
ances.

Table 5 illustrates the kinds of wins we saw on the Me-
dia test set. Although one might intuitively expect most wins
to look like example (a), replacing a non-entity with an entity,
this was often not the case. We also found that the right com-
bination of consecutive entities was assigned better scores than
nonsensically arranged entities, and even words adjacent to an
entity were also corrected. This was made possible by the flex-
ibility of using rescoring patterns rather than rescoring entities
directly.

(a) Non-entity replaced by a semantic entity:
Base: play moriah carey
Exp.: play <musical_artist> mariah carey </musical_artist>
Ref.: Play Mariah Carey.

(b) An improbable entity sequence $SONG $COMPOSITION
is replaced with a valid combination $SONG $ARTIST:
Base: play play <song> oh me </song> <composition>

cheerleader </composition>
Exp.: play <musical_artist> omi </musical_artist>

<song> cheerleader </song>
Ref.: Play OMI Cheerleader.

(c) Adjacent word “play” is corrected by being rescored
together with the semantic entity:
Base: the <musical_artist> lady gaga </musical_artist>
Exp.: play <musical_artist> lady gaga </musical_artist>
Ref.: Play Lady Gaga.

Table 5: Example wins on media playing utterances when
rescoring the priors for matched patterns by -3.0 in negative-
log space.

5.2. Side-by-side Comparison on Google Assistant Traffic

We also performed quality evaluation experiments on live
Google Assistant traffic. We used an evaluation method referred

to as a side-by-side (SxS). In a SxS, a baseline ASR system is
run in parallel with an experimental ASR system. The base-
line does not perform semantic lattice processing and rescoring,
while the experimental side performs it but is otherwise identi-
cal. Live traffic voice commands are recognized using both sys-
tems, and output differences are collected for human rating. All
data is anonymized and and personally-identifiable information
is removed.

The raters determine whether a transcript change is an im-
provement, a regression, or neither, termed “win”, “loss”, and
“neutral”, respectively. An improvement does not imply a per-
fect transcript or even an improvement in WER; it indicates that
a human would consider the results more meaningful. Simi-
larly, two transcripts that are judged the same can be different
in content but yield equally useful transcriptions. To maintain a
blind experiment, the raters are not aware of the specific nature
of the task. Additionally, the baseline and experiment sides are
presented to the raters in a random order so they cannot know
which is which.

In the SxS experiments, 648 rescoring patterns were used,
containing one or more of three visual media-related classes
(actor, film, tv_program) were rescored by -2.0.

Diff Size Wins Losses Neutral
440 78 27 335

Table 6: Side-by-side experiments analysis of utterances that
resulted in differences.

The SxS rating results are presented in Table 6. The exper-
imental system produces 2.89 win-loss ratio over the baseline
system due to semantic lattice processing and rescoring.

While aggregating utterances used in the SxS experiments,
we recorded median input sizes (the number of states in the
ASR word lattice) and the median latencies of Semantic Lat-
tice Tagging and Semantic Rescoring. The results are shown
in Table 7; in the average case, the semantic system added less
than 2.4 ms to the total recognizer latency. Our observed 1.8ms
latency for tagging is slightly lower than the 2.8ms previously
reported in [11]; this is explained in part by the difference in
domain traffic and partly by the smaller number of semantic
classes used in the current experiment (3 vs. 300 classes used
in [11]).

Median ASR lattice size 14.15 states
Median tagging latency 1.839 ms
Median rescoring latency 0.520 ms

Table 7: Utterance statistics in SxS experiments.

6. Conclusion
In this paper, we described a contextual ASR system that uses
semantic lattice processing and rescoring in order to improve
recognition accuracy. We showed that our system reduces WER
by 12% relative on media playing commands test set as well as
brings quality gains on live Google Assistant traffic. We ana-
lyized a use case in which a broad group of semantic entities
such as songs or films are used in lattice processing. Directions
for future work include expanding to more domains, automat-
ically learning weighted rescoring patterns, and using stronger
contextual signals.
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