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Abstract
A successful deep learning-based method for separation of
a speech signal from an interfering background audio sig-
nal is based on neural network prediction of time-frequency
masks which multiply noisy signal’s short-time Fourier trans-
form (STFT) to yield the STFT of an enhanced signal. In this
paper, we investigate training strategies for mask-prediction-
based speech-background separation systems. First, we exam-
ine the impact of mixing speech and noise files on the fly dur-
ing training, which enables models to be trained on virtually
infinite amount of data. We also investigate the effect of us-
ing a novel signal-to-noise ratio related loss function, instead of
mean-squared error which is prone to scaling differences among
utterances. We evaluate bi-directional long-short term memory
(BLSTM) networks as well as a combination of convolutional
and BLSTM (CNN+BLSTM) networks for mask prediction and
compare performances of real and complex-valued mask pre-
diction. Data-augmented training combined with a novel loss
function yields significant improvements in signal to distortion
ratio (SDR) and perceptual evaluation of speech quality (PESQ)
as compared to the best published result on CHiME-2 medium
vocabulary data set when using a CNN+BLSTM network.
Index Terms: source separation, deep learning, speech denois-
ing, speech enhancement

1. Introduction
Speech enhancement and audio source separation has been in-
teresting research topics for researchers in the audio signal pro-
cessing area. Recently, deep learning based supervised speech-
background [1, 2, 3] and speech-speech separation [4, 5] efforts
have intensified and such systems started achieving much better
results as compared to their alternatives, be it conventional un-
supervised methods, or other alternatives based on supervised
or semi-supervised learning, such as approaches using nonneg-
ative matrix factorization [6, 7].

Some earlier studies compared separation methods based
on direct prediction of magnitude spectra of individual sources
(or one target source) versus mask prediction [8, 9, 10]. The
mask prediction approach estimates a multiplier of the mixed
spectrogram which would yield one of the sources. While
the results reported thus far are mixed, in this paper, we at-
tempt to improve the mask prediction approach in the speech-
background separation tasks.

We investigate two aspects of the mask-based speech-
background separation approach. The first aspect is the data
that we use to train these mask prediction models. Data aug-
mentation has been successfully used in other areas of deep
learning, such as image classification [11] and speech recog-
nition [12, 13, 14]. For example, the noise robustness of speech
recognition systems can be improved by adding reverberated
and noise-corrupted versions of original speech utterances to

the training set. Data augmentation for source separation tasks
is quite straightforward to come up with. By having a training
set which is formed by arbitrarily mixing two sources during
training would cover a much larger variety of mixing cases for
a neural network to learn from. Then, the question comes how
many data points do we need? In the past, the models were usu-
ally trained on fixed amounts of mixture data by creating them
prior to training. In this paper, we explore the effect of mixing
the utterances on the fly during training. This allows us to train
the model on virtually infinite quantity of data.

The second aspect is the loss function for model training.
We believe we have not yet attained the best loss function for
audio source separation that works well in terms of convergence
behaviour on the training data as well as generalizability to un-
seen data. We introduce new loss functions and explore their
potential in the speech-background separation problem. The
new loss functions do not get affected by scaling of the train-
ing utterances which we believe is an important quality.

2. Problem Definition
In speech-background separation, we seek to separate sources
from an observed mixed signal y[k] = s[k] + n[k] where y[k]
denotes the observed signal, s[k] is the first source which is
typically speech, and n[k] is the second source which is typi-
cally noise or other interference like music in the background.
It has been beneficial to work in the short-time Fourier trans-
form (STFT) domain in which we have the additivity Y (t, f) =
S(t, f)+N(t, f) where (t, f) indicates the time-frequency bin
of interest and Y (t, f) is the complex-valued discrete Fourier
transform of a windowed signal at frame t.

Our goal is to recover S(t, f) and N(t, f) given Y (t, f).
In order to overcome the under-determined nature of the prob-
lem, we have to make use of some properties of the sources.
Deep learning can implicitly leverage the source-related prop-
erties by training a source separation model on a lot of clean-
mixture pairs in a supervised manner.

3. Mask Prediction
Mask prediction refers to finding a mask, say Ms(t, f) which
helps us get an estimate of the source signal’s STFT from the
mixture signal as Ŝ(t, f) = Ms(t, f)Y (t, f). We can de-
fine ideal masks in different ways and seek to estimate these
masks for improved prediction of the sources. We will focus
on two types of real-valued masks in this paper. First one is an
ideal amplitude mask (IAM), which is defined asM IAM

s (t, f) =
|S(t, f)|/|Y (t, f)|. The IAM yields the exact magnitude of
the first source when applied. A phase-sensitive filter (PSF) is
defined as MPSF

s (t, f) = |S(t, f)| cos(θsy)/|Y (t, f)|, which
yields the lowest squared error estimate of the source in the
complex STFT domain, given the mask is real-valued [15].
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Figure 1: System architecture.

Here θsy is the angle between two complex numbers Y (t, f)
and S(t, f). In the context of deep learning based mask pre-
diction, we find ideal ratio mask (IRM) and Wiener-like masks
[8] worse than these two alternatives, hence we do not consider
them here. We also compare with complex IRM (cIRM) predic-
tion [16, 17] in our experiments.

We use the system architecture shown in Figure 1 for pre-
dicting masks for both of the individual sources in the mixture.

4. Loss Functions for Mask Prediction
Although we would like our networks to predict masks for re-
construction of sources, it is not immediately clear what con-
stitutes a good loss function for that purpose. Actually, there
are many possible loss functions and many different ones were
considered in the literature. While designing or specifying loss
functions, we need to be careful about a few things.

1. The loss function should relate to the performance metric
we desire to optimize on test data.

2. While having a good convergence behavior, the loss
function should avoid over-fitting to the training data, so
that it would generalize well on unseen test data.

Initial studies of mask prediction used mask domain mean
squared error loss function which can be written as follows:

1

N

∑

u,t,f

(Ou(t, f)−M∗u(t, f))2.

Here u is the utterance index and Ou(t, f) is the output of the
mask prediction network at (t, f) time-frequency bin of utter-
ance u and N is the total number of time-frequency bins for all
utterances and M∗u indicates the ideal mask target which can be
IAM or PSF ideal mask.

In [3, 8], we used a signal domain loss function where
the error is measured in the domain of predicted signals:
1/N

∑
u,t,f (Ou(t, f)|Yu(t, f)|−M∗u(t, f)|Yu(t, f)|)2,which

is equivalent to a weighted version of the previous mask domain
loss where the weight is the energy of the mixed signal at each
time-frequency bin:

1

N

∑

u,t,f

|Yu(t, f)|2(Ou(t, f)−M∗u(t, f))2.

This loss function is arguably better than the mask-domain
loss since whereas the mask-domain loss function weights each

time-frequency bin equally, this one gives more importance to
the high energy bins which matter more in calculating signal-
to-reconstruction-noise ratios (SNR) which we care about as a
metric of performance.

We called these losses magnitude spectrum approximation
(MSA) and phase-sensitive spectrum approximation (PSA) loss
functions in [8, 15] for prediction of IAM and PSF masks re-
spectively. In the following discussion, we call “targets” for
magnitude signal prediction as MSA or PSA targets and use the
symbol S∗u(t, f) = M∗u(t, f)|Yu(t, f)| for them, where M∗

is the IAM mask for an MSA target and the PSF mask for a
PSA target. For predictions of these targets, we use the symbol
Ŝu(t, f) = Ou(t, f)|Yu(t, f)|.

4.1. Problem with Signal-domain Losses

One possible problem with the signal domain loss functions,
such as MSA and PSA is that they are prone to scaling differ-
ences among utterances. So, if an utterance has higher energy
overall than another, it is weighted more in the loss function
which is not desired. We would like training to generalize to
unseen utterances, so we do not want the training to be bal-
anced towards higher energy utterances or even higher energy
regions within utterances but learn equally well to separate any
possible mixture of speech and background.

One way to mitigate this effect is to use a compression
function on the entities to be predicted and the prediction it-
self before taking the squared error. Hence, instead of using
the loss D(s, ŝ) = (s − ŝ)2, we use the following D(s, ŝ) =
(f(s) − f(ŝ))2, where f(.) is a compression function. One
possible compression function is the logarithm f(s) = log(s).
When it is used, the loss is equivalent to the squared error in
the log-spectrum domain. However, we found that power-law
compression is more stable and works better f(s) = sα where
α ∈ (0, 1] is a parameter. Using compression makes large val-
ues smaller and small values relatively larger in the loss func-
tion and avoids high energy regions from dominating the loss
function and making low energy regions/utterances relatively
more important. When we use compression, we apply it to both
the predicted and the target spectra, making our new MSE loss
function: 1/N

∑
u,t,f (Ŝu(t, f)

α − S∗u(t, f)α)2.
Another way to avoid scale differences among utterances

is to normalize losses for each utterance with the total energy
in the utterance (possibly after compression) which we call the
normalized mean-squared error (NMSE) loss function:

1∑
u

wu

∑

u

wu∑
t,f∈u

(S∗u(t, f)α)2

∑

t,f∈u
(Ŝu(t, f)

α − S∗u(t, f)α)2.

This loss function somewhat takes care of the energy differ-
ences between utterances. Here wu is a weight for each ut-
terance. In this paper, we promote the use of an “SNR” loss
function which we define as follows:

−SNR =
−10∑
u

wu

∑

u

wu



log10


 ∑

t,f∈u
(S∗u(t, f)

α)2




− log10


 ∑

t,f∈u
(Ŝu(t, f)

α − S∗u(t, f)α)2




 .

This is actually the negative of the SNR in dB of the recon-
structed signal with respect to the target magnitude of interest.
wu are weights for each utterance, which can either be all one
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or they can be equal to the length of each utterance. Note that,
we kept the power-law compression in place, since we found
it still to be beneficial even after using the SNR loss function.
Power-law compression evens out energy differences within an
utterance and the SNR loss function evens out energy differ-
ences among utterances. Also note that, both NMSE and neg-
ative SNR loss functions are not affected by scaling of utter-
ances, and hence they may be more desirable than the MSE
loss. The SNR is calculated in magnitude-STFT domain and
this is closely related to the SNR in time domain which we care
about as a performance metric.

Even though SNR loss is a good one that matches our test
criterion, it may have a drawback for certain training data. Since
the value of SNR in dB for an utterance is unbounded, we may
have the network focus on “easy” utterances since it can get
“cheap” gains by increasing their SNR up to infinity and ignor-
ing all other utterances. This could happen if there is noiseless
data in the training set and the network can get infinite SNR
by outputting all ones as a mask regardless of the input. To
avoid these extreme cases, a possible solution is to compress the
SNR loss with a function like SNR′ = A tanh(SNR/A) which
would limit the output SNR value to be between−A and A and
saturate the range. Hence, we used the compressed version of
SNR loss in this paper.

4.2. Mel Domain Loss In Early Stages

During training, in early stages, we also make use of a Mel-
domain loss function which is obtained by transforming pre-
dicted and true spectral magnitudes with a linear Mel-transform.
After Mel transformation, we obtain a lower resolution Mel-
domain spectra as compared to full-length higher dimensional
spectra. We apply power-law compression to the Mel-domain
transformed spectra as well. This seems to help during initial
epochs of training to guide the network to have better con-
vergence. With the Mel domain loss, we basically replace
D(s, s′) = ||(s)α − (s′)α|| with D((s, s′) = ||(Ms)α −
(Ms′)α||2 which means that we process each of the four mag-
nitude spectra in Figure 1 with a linear Mel transform before
applying power-law compression.

4.3. Predicting Double Masks

In this paper, we always predict two masks, one for each source,
instead of focusing on prediction error of a single source. Our
loss functions are a sum of loss functions for each source.

Each mask has an infinite possible range and it is beneficial
to limit their ranges. We consider the triangle depicted in Fig-
ure 2 and focus on the prediction of IAMs. Instead of predict-
ing double masks directly, we predict their sum and difference.
From the relation between sides of a triangle, we know that the
sum of the magnitude masks σ = Ms + Mn ≥ 1 and their
difference satisfies −1 ≤ δ =Ms −Mn ≤ 1.

Even if the sum of masks is unlimited, we may limit the sum
to be between 1 and 2 (since sum of masks to be larger than two
is unlikely) and use a shifted sigmoid output nonlinearity for the
network predicting the sum of the masks, 1+1/(1+ e−x). We
use a tangent hyperbolic output nonlinearity for predicting the
difference of masks which fits its range. From the sum and the
difference, we predict the individual masks usingOs = 0.5(σ+
δ) and On = 0.5(σ − δ).

1

Figure 2: Double masks illustrated in the complex domain.

4.4. Post-transformation of Double Masks

At test time, it is beneficial to transform the predicted double
masks as follows. For amplitude predicting masks (MSA), we
can shrink the masks by calculating their projection in the di-
rection of the mixed signal. From the triangle in Figure 2, these
projections can be found with a transformation as follows for
MSA:O′s = 0.5(1+O2

s −O2
n), andO′n = 0.5(1+O2

n−O2
s).

For PSA trained masks, we know that the ideal phase-sensitive
filters should sum to one, so we can use that constraint at test
time to get O′s = 0.5(Os + (1 − On) and O′n = 0.5(On +
(1− Os) for the speech and noise masks. After these transfor-
mations, we found that MSA trained masks get closer in perfor-
mance to PSA trained masks.

5. Data Augmented Training
Our version of data augmented training uses speech and noise
files that are in the original training data set and does not in-
troduce any additional new data for training. In that sense,
it is a “fair” use of training data, since training data includes
both mixed signals as well as the clean sources corresponding
to them.

However, we form novel mixtures on-the-fly as mentioned
earlier. A random speech signal is taken from the training set
and it is shifted randomly between −L/2 and L/2 samples
where L is the STFT frame shift in samples. Then another noise
utterance is randomly chosen. If the noise utterance is longer in
length, a random segment in the noise utterance is added to the
speech signal at a random SNR value within the range of SNRs
considered in the evaluation set. If the noise signal is shorter,
it is doubled in length by repetition until it is longer than the
speech signal and a random segment within the repeated noise
file is chosen to be added. This way we obtain virtually infinite
possible combinations of speech and noise files in the original
training set and the training never sees the same mixed signal
twice. Each new signal is a novel mixture for the training al-
gorithm. This way of training seems to avoid overfitting to the
training data and regularizes training.

6. Experiments and Discussion
We performed speech-background separation experiments on
the CHiME-2 medium vocabulary data set [18]. Earlier stud-
ies on this data set can be found in [8, 15, 3].

As input to the network, we experimented with 100 or
200 dimensional Mel features. When computing such high-
dimensional Mel features, we linearly interpolated the input
magnitude spectra to avoid zero Mel-filterbank energies. The
STFT parameters were a frame shift of 160 samples, a window
size of 480 samples, and a DFT size of 512.

We considered two different neural networks for mask pre-
diction. Our base network is either a feed-forward followed by
two layer BLSTM network with 400 hidden nodes or a CNN
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+ BLSTM network. The CNN network had two convolutional
layers and a 3-D pooling layer with the first one with 15x3 ker-
nels and 32 output channels and the second one with 3x3 ker-
nels and 64 output channels. There is no nonlinearity between
two convolutional layers. The pooling layer pools over 3x1x3
blocks, where the first dimension is channels and the last di-
mension is frequencies. Thus, we never pool in the time di-
mension since we process whole utterances as 2D images1. The
pooled CNN output is transformed into a 2D shape and fed into
a BLSTM with 300 nodes. Both these base networks have an
output dense linear layer with an output length of three times the
spectrum size with hyperbolic tangent nonlinearity. The base
networks are followed by a feed-forward output layer which has
two outputs for double masks prediction (through their sum and
difference as mentioned in Section 4.3) or real and imaginary
masks for cIRM prediction [16] which we performed for com-
parison.

We define an epoch as having 1000 utterances (about 2
hours) and train with a variable frame-size minibatch of 5 ut-
terances. For the first 20 epochs, we use a Mel-domain trans-
formed and power-law compressed loss function with 80 Mel
dimensions and a coefficient of α = 1/5, then for the following
20 epochs, we use 160 Mel dimensions and a α = 1/3 in the
loss function as described in Section 4.2. Afterwards, we use
full spectrum loss and an α = 1/2 is used. We fix the learning
rate for the initial 100 epochs and decrease it linearly between
100-300 epochs down to a factor of 100 using ADAM [19] opti-
mizer, where we start with a learning rate of 0.002. We also use
annealed dropout [20], where we start with an initial dropout
rate of 0.5 and reduce it linearly after 50 epochs. We always
conclude training after 300 epochs.

6.1. Original and Data-augmented Training

Figure 3 shows the training and validation losses for the models
trained on the original training set and with the proposed on-
the-fly data augmentation when using a BLSTM network with
an SNR loss function. The loss functions shown are the nega-
tive signal-to-noise ratios in the complex STFT domain which
closely relate to the time-domain SNR. We can see that on-
the-fly data augmented training mitigated overfitting to training
data, achieving a lower validation loss than the model trained
without it.

Figure 3: Negative SNR progress for original and on-the-fly
augmented training. Validation (or dev) set evaluated once ev-
ery 10 epochs.

Table 1 compares the best published result in the literature
on CHiME-2 wsj0 (medium vocabulary) data set with the re-
sults we get using our networks with the original training data.
The metrics we used are speech to distortion ratio (SDR) and

1We plan to provide more information about this network architec-
ture in another publication.

speech to interference ratio (SIR) [21], perceptual evaluation of
speech quality (PESQ) [22] and short-time objective intelligi-
bility (STOI) [23]. The results show that we can obtain similar
performance to our earlier result in [15] with the networks we
consider in this paper using the same original training data and
an MSE loss function. In these experiments, we used 100 cube-
root Mel features as input to the network.

In the second part of Table 1, we show the results using on-
the-fly data-augmented training and novel loss functions. The
best SDR result is obtained with an SNR loss function using
a PSA target when using data-augmented training. In data-
augmented training, we used 200 cuberoot Mel features as input
which yielded better results. For the NMSE loss function, we
used a weight of wu = Tu for each utterance, where Tu is the
utterance length in frames. For the SNR loss, we used a weight
of wu = 1 for each utterance. For the SNR loss, we use a tanh
compression with A = 20. The last row in the table contains
the complex IRM (cIRM) prediction result when we use the loss
function along with the compression suggested in [16, 17] with
data-augmented training. Using the MSA target usually tended
to achieve a better PESQ score as compared to the PSA target.
Note that we used mask transformations as described in Section
4.4 which shrinks MSA masks at test time.

Table 1: Evaluation results on the CHiME-2 evaluation data set
with left channel audio and with original and augmented train-
ing data and different loss functions. 100 or 200 dimensional
cuberoot-Mel-filterbank features were used as input.

Method Loss SDR SIR PESQ STOI
No enh. n/a 2.34 2.34 1.55 0.82
Original training data, 100 dim cuberoot-Mel features
Best in [15] MSE-PSA 14.51 19.78 2.78 0.91
BLSTM 2x400 MSE-PSA 14.21 19.56 2.70 0.911
CNN+BLSTM MSE-PSA 14.52 20.23 2.79 0.916
Augmented training data, 200 dim cuberoot-Mel features
BLSTM 2x400 MSE-PSA 14.62 19.94 2.81 0.915
BLSTM 2x400 MSE-MSA 14.48 18.62 2.81 0.920
BLSTM 2x400 SNR-PSA 14.88 20.23 2.88 0.920
BLSTM 2x400 SNR-MSA 15.03 20.43 2.93 0.923
CNN+BLSTM MSE-PSA 15.03 21.19 2.94 0.921
CNN+BLSTM MSE-MSA 14.72 19.71 2.96 0.924
CNN+BLSTM NMSE-PSA 14.94 21.01 2.89 0.919
CNN+BLSTM NMSE-MSA 14.85 20.50 2.93 0.920
CNN+BLSTM SNR-PSA 15.23 21.37 2.98 0.924
CNN+BLSTM SNR-MSA 15.11 20.84 3.00 0.925
CNN+BLSTM MSE-cIRM 13.89 19.11 2.90 0.919

7. Conclusions
We experimented with on-the-fly data augmentation and novel
loss functions for training speech-background separation mod-
els. We showed that data augmentation is quite beneficial in
training speech-background separation networks. We proposed
new loss functions that yield better performance as compared to
the typical MSE loss function that was being used in the litera-
ture. The new loss functions are shown to outperform old ones
while training with on-the-fly data augmentation on CHiME-2
data set as compared to the best result published in the litera-
ture. In our future work, we plan to work on larger databases
where one can build a generic speech background separator that
would work across many different scenarios.
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