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Abstract
Noise reduction in speech signals remains an important area
of research with potential for high impact in speech processing
domains such as voice communication and hearing prostheses.
We extend and demonstrate significant improvements to our
previous work in synthesis-based speech enhancement, which
performs concatenative resynthesis of speech signals for the
production of noiseless, high quality speech. Concatenative
resynthesis methods perform unit selection through learned non-
linear similarity functions between short chunks of clean and
noisy signals. These mappings are learned using deep neural
networks (DNN) trained to predict high similarity for the exact
chunk of speech that is contained within a chunk of noisy speech,
and low similarity for all other pairings. We find here that more
robust mappings can be learned with a more efficient use of the
available data by selecting pairings that are not exact matches,
but contain similar clean speech that matches the original in
terms of acoustic, phonetic, and prosodic content. The resulting
output is evaluated on the small vocabulary CHiME2-GRID
corpus and outperforms our original baseline system in terms of
intelligibility by combining phonetic similarity with similarity
of acoustic intensity, fundamental frequency, and periodicity.
Index Terms: noise reduction, speech enhancement, speech
processing, concatenative resynthesis, deep neural networks.

1. Introduction
The presence of noise in speech signals can significantly de-
teriorate the performance of speech processing applications in
domains such as voice communication and hearing prostheses.
Research in noise reduction largely targets modification of the
noisy signal to approximate the clean signal. While such ap-
proaches improve the overall quality of the signal, they also tend
to reduce the quality of the clean speech while retaining some
noise [1]. Thus, there is interest in methods which can trans-
form noisy speech to produce high quality and noiseless speech.
Concatenative resynthesis methods [2, 3] replace short units of
noisy speech with matching units of clean speech, thus produc-
ing a noiseless signal while improving the quality of the speech.
The core component of these methods is to learn a non-linear
similarity metric between short units of noisy and clean speech.
Given a noisy speech signal and a dictionary of units of clean
speech, these methods use the learned metric to identify the most
similar clean units of speech that can be concatenated to recon-
stitute the original clean speech signal. The non-linear similarity
metric is learned using a deep neural network (DNN) which is
presented with paired examples of clean and noisy speech. In
previous work [2, 3, 4], such pairings were based on an exact
match criterion. Each paired training example consists of a clean
signal and its noisy counterpart, i.e. where noise has been added
to that clean signal. The DNN is trained to learn a similarity

score of 1 when presented with such a positive example, and a
score of 0 for any other pairing (negative example). To balance
positive and negative classes, the negative pairs are sampled by
associating a clean signal with a random noisy signal which is
not its counterpart. This is a restrictive criterion and limits the
training signal available for learning to the DNN. It constrains
the amount of training data and does not allow for generaliza-
tion across signals with similar, but not identical, acoustic, and
linguistic content.

We investigate improving the training signal by taking into
account the acoustic, phonetic and prosodic similarity of paired
signals. Rather than exactly matching clean and noisy examples,
we select pairs that are sufficiently similar based on one or more
of these characteristics. Thus the DNN may learn to substitute a
clean signal with another clean signal containing similar speech
content. This makes more efficient use of the available data
since we no longer need to rely on exact matches to select paired
examples for training the DNN. Moreover, it allows for the DNN
to learn a more generalizable similarity metric.

2. Related Work

Concatenative resysnthesis for producing noiseless, high quality
speech from noisy signals was introduced by Mandel et al. [2, 3]
and used a DNN for similarity metric learning when presented
with paired examples (concatenated feature vectors from pairs of
clean and noisy units). Maiti et al. [4] extended this work to use
twin neural networks with ranking loss for learning the similarity
metric. However, the neural network in both systems used paired
examples that were selected using an exact match criterion. Our
work uses acoustic and linguistic characteristics of the clean
speech to select pairs that are sufficiently close to be substituted
for one another. The system described by Mandel et al. [2] also
serves as the baseline for comparison in our experiments.

Concatenative resynthesis systems are an example of
exemplar-based speech enhancement. Exemplar-based methods
have been proposed in recent research using generative models
for clean and noisy signals. Xiao et al. [5] and Nickel et al. [6]
used Gaussian mixture model hidden Markov model (GMM-
HMM) based systems to perform coarse matchings against a
dictionary of signals to select single best noise-suppressed exem-
plars. Ming et al. [7], Delcroix et al. [8], and Ogawa et al. [9],
replaced subsequences of noisy utterances with sub-sequences
of the training corpus having maximum likelihood under their
GMM. By using generative models, these approaches are opti-
mized to describe their training data. Concatenative resysnthesis
using DNNs, as in our approach, differs by learning a similarity
metric from training examples.
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3. Technical Overview
3.1. Data

We use the CHiME2-GRID small vocabulary dataset [10] of
simulated speech recorded in a living room environment. Each
utterance is a six-word sentence from the GRID corpus [11]
of the form “command color preposition letter digit adverb”,
e.g. “place blue at F 9 now”. The recordings are mixed with
household noises at six different signal-to-noise ratios (SNR):
-6, -3, 0, 3, 6, and 9 dB.

We use recordings from a single speaker (id 3) for training
and testing with clean speech from the “reverberant” condition
and noisy speech from the “isolated” condition (following the
experiments of Mandel et al. [2]). Stereo signals are averaged
to obtain monaural signals. The official training set has 500
utterances from which we randomly selected 40 utterances for
a validation set and use the remaining 460 utterances for train-
ing. Our test set consisted of 24 utterances from the official
development set, selected over six different SNR values. In all
experiments, our training set was selected to balance the number
of positive and negative examples of paired inputs.

3.2. Feature extraction

For each utterance, we compute log mel spectrograms with FFT
frame size of 32 ms and hop size of 16 ms. From these, we
extract 11-frame chunks of duration 192 ms, represented as 242-
dimensional feature vectors. Each chunks overlaps its neighbors
by 10 frames. This yields a training set of 113,896 examples
of both clean and noisy speech. For resynthesis at test time,
we used all 500 utterances to build a dictionary of clean speech
chunks available for matching to noisy chunks.

3.3. Paired-input network

The core component in concatenative resynthesis is the paired-
input network, a DNN for learning a non-linear similarity metric
g(z, x) between chunks of clean speech {z}Ii=1 and chunks
of noisy speech {x}Jj=1. We assume a noisy chunk is a clean
chunk superimposed with noise. A paired example (zi, xj) is
represented as a 484-dimensional vector by concatenating clean
and noisy feature vectors. This is input to a DNN with 4 hidden
layers, each with 1,024 rectified linear units (ReLU). We denote
the target metric with yij ∈ {0, 1} with positive examples as 1
and negative examples as 0. The output is a 2-unit softmax layer
representing the probability of belonging to a binary class {0, 1},
the target similarity metric. The DNN is trained to minimize
cross-entropy loss, L(yij , g(zi, xj)):

−
∑

i,j

yij log g(zi, xj) + (1− yij) log(1− g(zi, xj))). (1)

The DNN is trained using Adam stochastic gradient descent [12]
with initial learning rate 0.015 and decay parameters 0.9 and
0.999 (first and second moments). The batch size is 512 and we
use a dropout probability of 0.2 for hidden units [13].

4. Methods
In previous work [2], positive examples were selected using
an exact-match criterion yielding pairs (zi, xi), while negative
examples were randomly assigned per clean chunk yielding pairs
(zi, xj), i 6= j. This strict criterion restricts the number of pairs
available for training and limits the training signal available
to the DNN by forgoing examples that are sufficiently similar

to be substitutable. Thus, we investigate different methods of
improving the training signal available to the DNN to learn a
more useful and generalizable similarity function.

4.1. Phonetic similarity

Any collection of speech recordings contains many examples of
short chunks which realize identical or similar phones. In this
work, we leverage this fact, by also considering pairs of chunks
that are sufficiently similar to be considered as substitutes. Such
paired chunks provide positive examples of the form (zi, xj)
where i 6= j necessarily. Each frame in a chunk zi can be
annotated at the frame level by the phone realized during that
interval of speech. Thus the chunk may also be represented as
a phonetic vector, p(zi) = {p(zi)1 , . . . , p

(zi)
F }, where F is the

number of frames per chunk and pk ∈ {1 . . . 38} is an integer
representing one of 38 possible phonetic labels. We perform
forced alignment of utterances with their phonetic transcription
using the Montreal Forced Aligner [14]. Using this alignment,
each frame is annotated with a phone corresponding to its time
interval. We compute the frame-wise phonetic similarity as:

sPh(zi, zj) =
1

F

F∑

k=1

δ(p
(zi)
k , p

(zj)

k ), (2)

where δ is the Kronecker delta function such that δ(u, v) = 1
when u = v and δ(u, v) = 0 otherwise.

In our case, F = 11 frames and we consider two chunks
to be sufficiently similar when sPh ≥ 8

11
, i.e. we require a

frame-wise phonetic correspondence of at least 8 frames. By
finding such pairs, we build a dataset of positive examples. For
negative examples, we apply a threshold of sPh ≤ 3

11
to ensure

that paired chunks are sufficiently dissimilar. Our experiments
used the approximate nearest neighbors library, NMSLIB [15],
to efficiently find positive examples. Exploring our dataset of
signals we found, unsurprisingly, that overwhelming number
of pairs with zero phonetic similarity. Thus, we were able to
efficiently select negative examples by randomly sampling pairs
and pruning them to discard pairs with sPh ≤ 3

11
. Using this

approach, we were able to efficiently construct training sets with
up to 1,500,000 paired examples. For comparison, the previous
work [2], which serves as our baseline, was limited to the number
of clean chunks, well under 150,000 training pairs.

4.2. Perceptual similarity

We also investigate improving the discriminative power of
the DNN for distinguishing commonly confused phones in
speech. We categorized the phonetic labels into ten groups
based on classic results in perceptual confusion by Miller and
Nicely [16]: stressed vowels, unstressed vowels, voiced plos-
sives, unvoiced plossives, affricates, voiced fricatives, unvoiced
fricatives, approximants, nasals, and silence. Each chunk was
then represented by a vector q(zi) = {q(zi)1 , . . . , q

(zi)
F } where

qk ∈ {1 . . . 10} representing one the ten groups. The perceptual
similarity of two chunks can be computed in a similar way as
the phonetic similarity:

sQ(zi, zj) =
1

F

F∑

k=1

δ(q
(zi)
k , q

(zj)

k ). (3)

Two chunks with high perceptual similarity are prone to
being confused in speech and likely to be dissimilar in terms
of phonetic similarity. We select negative examples such that
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sq ≥ 8
11

using the approximate nearest neighbors approach
as above. However, we pruned the selections to ensure that
they were phonetically dissimilar with sPh < 8

11
and thus not

coincident with any positive examples.

4.3. Acoustic and Prosodic similarity

In addition to phonetic similarity, we also use low-level prosodic
characteristics to identify similar pairs. In particular, we use per-
frame acoustic intensity, fundamental frequency, and periodicity
to evaluate the similarity between chunks, as extracted by the
AuToBI toolkit [17]. AuToBI measures intensity in decibels,
frequency in Hz, and periodicity as a number between 0 and 1.
The frame rate of measurements is different between AuToBI
and our system, so we linearly interpolate these values.

In order to obtain the intensity similarity between two
chunks, we measure the Euclidean distance between their in-
tensity vectors, Ii, Ij , and formulate the similarity sI as:

sI(Ii, Ij) = e−αI‖Ii−Ij‖. (4)

The exponential function is used so that the similarity between
two chunks is one if the distance is zero and is zero if the distance
between two chunks is very large. We use the same approach to
derive the similarity for the fundamental frequency and period-
icity with the parameters αF and αPe respectively. In addition,
we replace the frequency of voiceless or silent frames with 0.1,
which is far from any real frequency, so that the similarity be-
tween two unvoiced frames is one. Finally, the overall similarity
between two chunks, s(zi, zj), is the weighted combination of
similarities in phonetic content (sPh), intensity (sI ), fundamen-
tal frequency (sF ), and periodicity (sPe):

s(zi, zj) =λPhsPh(zi, zj) + λIsI(zi, zj)

+ λF sF (zi, zj) + λPesPe(zi, zj). (5)

The weights λPh, λI , λF , λPe lie in the interval [0, 1] and are
constrained to sum to one. The parameter values are found
by tuning the system with a Bayesian optimization method de-
scribed in Section 4.3.1.

4.3.1. Hyper-parameter search

We select the appropriate values for λPh, λI , λF , λPe, αI , αF ,
and αPe utilizing Spearmint [18], a Bayesian optimization pack-
age. It performs an intelligent hyperparameter search, attempting
to minimize the frame-wise error rate shown in (6) on the devel-
opment set. The parameters are searched within the following
ranges: αI ∈ [0.1, 0.3], αPe ∈ [8.0, 12.0], αF ∈ [0.03, 0.07].
These ranges were chosen base on the distributions of the dis-
tances measured for each feature type on the training data. In
addition, the weights, λPh, λI , λF , λPe are also selected by the
package in the range [0, 1] and then divided by their sum.

4.4. Evaluation

We refer to the systems above as baseline (original system de-
scribed by Mandel et al. [2]), phonetic (section 4.1), perceptual
(section 4.2), and prosodic (section 4.3). We evaluate these
systems using both objective (computed) and subjective (human-
based) error metrics.

4.4.1. Objective computed metrics

Given a noisy speech signal xj , the concatenative resynthesis
system uses the learned similarity metric to identify a matching

clean signal zi from the dictionary. To evaluate the quality of
the mapping, x→ z, we can compare the frame-level phonetic
transcriptions of the x and z. We consider two objective metrics
for evaluation: frame-wise error rate and phone error rate.

We compute the frame-wise error rate as:

ef (z, x) = 1− 1

F

F∑

k=1

δ(p
(z)
k , p

(x)
k ), (6)

where pk is the phonetic label of the kth frame in a signal. Thus,
ef considers the frame-wise phonetic correspondence of the
input and output chunks. We used this metric when tuning our
hyperparameters and building a final system for testing.

We also compute a phone error rate based on collapsing
repeated phones, aligning the phonetic sequences of the input
and output signals, then considering the insertion, substitution,
and deletion errors. Since consecutive chunks overlap by 10
frames, we need to account for overlapping phone labels for
frames during resynthesis. We do this by relabeling a frame
with a composite phone when overlapping frames have different
labels. For example, if two overlapping frames have different
labels, say “B” and “D”, we label the corresponding frame in the
resynthesized chunk as “B-D” (the composite labels are always
sorted lexicographically). After preprocessing the phone labels
as described, we compute phone error rate by using the Speech
Recognition Scoring Toolkit (SCTK) [19].

The frame-wise metric measures performance in terms of
direct mappings between inputs and outputs of our system. The
phone error rate collapses repeated sequences and takes align-
ment into account. Intuitively, we expect the latter metric to be
higher and a rough approximation to an error rate if this system
were used a preprocessor for transcribing words.

4.4.2. Subjective intelligibility metric

We also conducted listening tests determine a subjective intelligi-
bility error rate. This metric measures how accurately listeners
perceive what was spoken. We selected 12 random (noisy) ut-
terances from the test set at random SNR levels. These were
resynthesized to produce clean speech for each of the four sys-
tems (called baseline, phonetic, perceptual, and prosodic). We
recruited three participants: two females and one male (ages
33, 34, and 35). Two were native speakers of English and one
was a non-native, but fluent, English speaker. Participants were
asked to listen to randomly selected examples of clean speech or
resynthesized speech from one of the four systems, comprising a
total of 72 stimuli. They were instructed to transcribe the spoken
sentence for each utterance. Although they were provided with
the GRID grammar, they were free to transcribe what they heard
independently. The subjective error rate was measured as the
number of words incorrectly transcribed.

5. Results
The phonetic and perceptual systems were tuned on the valida-
tion set using a grid search over the number of paired exam-
ples and a transition parameter (γ) [2] for mapping distances to
affinities. The final phonetic system was trained using 800,000
positive and negative examples and γ = 1.0, while the final
perceptual system was trained using 1,500,000 positive and neg-
ative examples and γ = 1.0. The prosodic system was tuned
using the hyper-parameter search described in Section 4.3.1. The
final tuned prosodic system was trained using the parameter val-
ues: λPh = 0.382, λI = 0.244, λPe = 0.374, λF = 0.0,
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Figure 1: Objective error rates (y-axis) versus subjective error
rates (x-axis) from intelligibility tests at different SNR levels.
Left: objective frame-wise error rates; right: objective phone
error rates.

Table 1: Average objective frame-wise error rates for different
systems and SNR levels.

system -6dB -3dB 0dB 3dB 6dB 9dB Avg

prosodic 42.8 34.0 28.9 23.4 24.6 23.2 29.5
phonetic 44.3 34.7 30.5 25.3 27.8 24.2 31.1
perceptual 45.3 38.0 29.5 27.8 28.3 25.0 32.3
baseline 49.1 36.7 31.9 28.4 30.1 23.7 33.3

αI = 0.3, αPe = 8.0, αF = 0.03; with 200,000 positive and
negative examples. These parameter values indicate that the sim-
ilarities due to the phonetic and periodicity characteristics of the
signal contribute the most value, while the frequency information
contributes the least. This may be since Autobi determined fre-
quencies of both unvoiced consonants and silence as ”NaN” and
therefore the frequency was not as informative as other features.

The final results from resynthesizing the test set are shown
in Table 1 (frame-wise error rates) and Table 2 (phone error
rates). When compared to the baseline, our methods perform
better better in almost all cases. While results based on our
validation set had shown the perceptual system outperforming the
phonetic system, the test set results in Tables 1 and 2 indicate that
these systems have similar performance. The prosodic systems
performs best based on the frame-wise metric, the metric used
for tuning. As expected, the phone error rates are higher overall.
In Table 2, using the phone error rate, we see that the perceptual
and phonetic systems score better than prosodic. This may be
because this metric was not used for tuning the systems. We also
think of this metric as a rough approximation to a transcription
phone error rate without a language model, and thus a loose
upper bound on an objective error rate.

Intelligibility results from listening tests on random subsets
of clean and resynthesized test utterances are summarized in
Table 3. Clean speech utterances act as a control and naturally
receive the lowest subjective error rates. For resynthesized utter-
ances, participants generally achieved lowest error rates across
different SNR levels for the prosodic system, which combines
phonetic, acoustic and similarities. Participants achieved lower
errors rates for the perceptual system relative to the baseline only
at low and high SNR levels. This demonstrates that improving
the training signal available to the DNN by combining acous-
tic, phonetic and prosodic characteristics of speech can yield
noiseless signals that are more intelligible to humans.

To evaluate our computed metrics, we also looked at whether
subjective error rates were correlated with the objective error
rates. Figure 1 plots subjective errors against objective errors
showing points at SNR levels. It also depicts a linear regression

Table 2: Average objective phone error rates for different systems
and SNR levels.

system -6dB -3dB 0dB 3dB 6dB 9dB Avg

perceptual 60.8 48.6 36.2 32.8 31.0 28.4 39.6
phonetic 64.4 46.8 41.1 30.5 32.8 27.5 40.5
prosodic 71.6 56.2 46.8 39.4 39.2 41.3 49.1
baseline 95.4 78.2 65.6 64.4 66.3 59.4 71.6

Table 3: Average subjective intelligibility error rates for different
systems and SNR levels.

system -6dB -3dB 0dB 3dB 6dB 9dB Avg

clean 0.0 0.0 0.0 0.0 3.7 0.0 0.6
prosodic 0.0 55.6 9.3 11.1 13.0 0.0 14.8
perceptual 16.7 44.4 24.1 11.1 20.4 0.0 19.4
phonetic 11.1 33.3 27.8 16.7 14.8 16.7 20.1
baseline 55.6 41.7 14.8 13.9 24.1 16.7 27.8

line of best fit to see how well intelligibility results may be pre-
dicted from computed error rates. We found an overall Pearson
correlation of 0.78 between intelligibility and frame-wise error
rates, and of 0.68 between intelligibility and phone error rates.
The relatively high correlation demonstrates the promise of our
computed error metrics, particularly frame-wise error rate, for
automatic tuning and evaluation of a concatenative resynthesis
system.

6. Conclusions
We have shown that concatenative resynthesis systems can make
more efficient use of the available training data and maximize
matching performance for the goal of producing noiseless and
high quality speech from noisy signals. This is made possible
through improved training signals for the similarity metric learn-
ing DNN by selecting paired examples that incorporate acoustic,
phonetic, and prosodic characteristics of speech. In particular,
we found that combining similarity based on phonetic content
and periodicity of the signals yields best results. In our experi-
ments, we show that it is possible to perform this in an efficient
and scalable manner by using approximate nearest neighbors for
aiding in the selection of training data. We also demonstrated
the effectiveness of using computed error metrics for tuning and
evaluating such systems. Moreover, we confirmed the correlation
of computed error metrics with subjective human evaluations
by conducting intelligibility listening tests. However, our sys-
tem was developed and tested on small vocabulary and speaker
dependent data. In future work, we will investigate the perfor-
mance and scalability of our approach on large vocabulary [20]
and speaker independent speech.
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