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Abstract
This study addresses the problem of automatic recognition of
Cued Speech (CS), a visual mode of communication for hearing
impaired people in which a complete phonetic repertoire is ob-
tained by combining lip movements with hand cues. In the pro-
posed system, the dynamic of visual features extracted from lip
and hand images using convolutional neural networks (CNN)
are modeled by a set of hidden Markov models (HMM), for
each phonetic context (tandem architecture). CNN-based fea-
ture extraction is compared to an unsupervised approach based
on the principal component analysis. A novel temporal segmen-
tation of hand streams is used to train CNNs efficiently. Differ-
ent strategies for combining the extracted visual features within
the HMM decoder are investigated. Experimental evaluation
is carried on an audiovisual dataset (containing only continu-
ous French sentences) recorded specifically for this study. In its
best configuration, and without exploiting any dictionary or lan-
guage model, the proposed tandem CNN-HMM architecture is
able to identify correctly more than 73% of the phoneme (62%
when considering insertion errors).
Index Terms: Cued speech (CS), visual speech recognition,
convolutional neural networks, hidden Markov models, modal-
ity fusion, assistive speech technology.

1. Introduction
Cued speech (CS) is a gesture-based communication system
proposed by Cornett [1] in 1967. It uses a set of specific hand
shapes and positions to complement the lip information and
make all phonemes of a given spoken language clearly visi-
ble. Its goal is to overcome the limitations of lip-reading [2]
and to improve the reading abilities for deaf children. It has
been adapted to more than 60 different languages and dialects
and is now used all over the world. For French, CS is named
Langue française Parlée Complétée (LPC) [3], and is based on
five hand positions and eight hand shapes encoding respectively
the vowels and consonants (see Fig. 1). Automatic recognition
of CS has been explored in [5, 6, 7]. In these studies, visual
artifices were used to track lips and hand features. As shown
in Fig. 2 (a), lips of the CS interpreter were painted in blue
and color landmarks were placed on hand. Other studies such
as [8, 9] focused only on the classification of static hand posi-
tion and/or shape in CS. In [8], a color glove was used to make
hand segmentation and tracking easier. The first motivation for
the present study is to get rid of these artificial visual marks (as
shown in Fig. 2 (b)).

As concern the decoding stage, classification of static hand
configurations in CS was addressed in [9] using an artificial neu-
ral network (ANN). In [5, 7], HMM-GMM was used for CS
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Figure 1: French Cued Speech (from [4]).

Figure 2: (a) Artificial marks placed on the CS interpreter in [5,
7] in order to track lips and hand. (b) Typical images considered
in the present study (no artificial marks are used).

phonemes recognition. In [5], HMM-GMMs were used to de-
code a set of isolated phonemes extracted from CS sentences,
i.e. the temporal boundaries of each phoneme to recognize in
the video was known at test stage. In [7], continuous phoneme
recognition was also performed by HMM-GMMs. However,
the dataset used in that study was composed only of isolated
words repeated several times (not continuous sentences). There-
fore, to the best of our knowledge, no study has addressed yet
the problem of continuous decoding of CS sentences. Achiev-
ing this challenging task is the second main motivation of the
present study.

Automatic recognition of CS shares some issues with other
fields of multimodal speech processing, such as audiovisual
speech recognition [10], visual speech recognition (i.e. auto-
matic lip reading) [11], silent speech interfaces [12, 13], as well
as with gesture recognition, including sign-language recogni-
tion [14]. Most of these fields have recently benefited from re-
cent advanced of deep learning. When dealing with 2D data,
the convolutional neural network (CNN) [15] has shown to be
a powerful approach to learn representations directly from the
raw data and to extract a set of high-level discriminative fea-
tures. CNN has recently been used in [16] for automatic lip-
reading, in [17] for speech synthesis driven by lips movements,
in [13] for silent speech recognition and in [14] for sign lan-
guage recognition.
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Figure 3: Schematic representation of the different tandem
architectures proposed for decoding automatically continuous
CS. (xh, yh) encodes the coordinates of the center of the hand’s
ROI.

In this study, we investigated the use of CNN to extract vi-
sual features from raw images of lip and hand in CS. CNNs are
combined with an HMM-GMM classifier that models the dy-
namics of extracted feature trajectories for each phonetic con-
text (in conventional ASR, this combination is often referred to
as a tandem architecture). The different tandem architectures,
as well as a baseline technique based on PCA, are described in
Section 2. Experimental protocol and results are presented in
Section 3.

2. Methodology
We propose several architectures for the automatic recognition
of continuous CS which differs from each other in: 1) the con-
sidered region of interest (ROI): one single ROI containing both
lips and hand vs. two distinct ROIs focusing on lips and hand,
respectively, 2) the visual feature extraction technique: an un-
supervised and linear technique based on PCA vs. a supervised
and non-linear technique based on CNN, 3) the way lip and
hand features are combined within the HMM-GMM decoder:
early vs. middle fusion. These architectures are referred to
as S1PCA/S1CNN, S2PCA/S2CNN, S3PCA/S3CNN. Fig. 3 shows an
overview of all the proposed architectures in this work.

2.1. Feature extraction

2.1.1. Preprocessing

First, an ROI focusing on lips was extracted in each image using
the Kanade-Lucas-Tomasi (KLT) feature tracker [18] (with a
dezooming process). Then two approaches were investigated.
In the first one, a unique bounding box large enough to contain
both lips and hand and anchored on the lip ROI was defined
(architectures S1PCA/CNN). In the second one, two separate ROIs
(lips and hand) were used. The hand ROI was extracted using
the GMM-based foreground extraction technique described in
[19] (architectures S2PCA/CNN and S3PCA/CNN). Lips and hand
ROIs were then converted to grayscale and resized to 64*64
pixel images using cubic interpolation.

2.1.2. PCA-based approach

This technique, also known as the EigenFaces technique [20],
is an unsupervised and linear technique which aims at finding
a decomposition basis that best explains the variation of pixel
intensity in a set of training frames. At training stage, a PCA
is performed on a set of N training frames (the resulting ba-
sis vectors are often called EigenLips [21] when applying this

Figure 4: Illustration of the convolutional neural network used
to extract visual features from hand images in S2CNN and S3CNN.

technique on lip images). At feature extraction stage, each new
frame is projected onto the set of these basis vectors. Visual
features are defined as the D first coordinates in that decompo-
sition basis. It was set by keeping the eigenvectors that carry
85% of the variance, which led in our case to D = 40 for
S1PCA/CNN when encoding jointly lips and hand, and D = 34
(resp. D = 45) when considering the lips (resp. the hand) only
in S2PCA and S3PCA .

2.1.3. CNN-based approach

In its canonical form, a CNN contains a given number of convo-
lutional layers, each being divided into convolutional filtering,
non-linearity, and pooling, stacked with a set of fully connected
layers, and with an output layer giving the posterior probabil-
ity of each class to decode. Because of the limited size of our
dataset (see Section 3.1), instead of using the well-known CNN
architectures (e.g. AlexNet), we only investigated a few archi-
tectures based on one or two convolutional/pooling layers, one
fully connected layer, and one output (i.e softmax) layer. Cross-
validation was used to optimize some hyper-parameters for each
layer (i.e. the number of filters, the kernel size for the 2D con-
volutions, the down-sampling factor for the pooling layer, and
the number of neurons in the fully connected layer). In all tested
models, the activation function of the convolutional and fully-
connected layer was ReLu whereas the softmax function was
used for the output layer. For all architectures, two convolu-
tion layers with 8 filters, a kernel size of 7x7 pixels, a down-
sampling factor of 3 (in both vertical and horizontal directions),
and 64 hidden neurons in the fully connected layer were used.
The structure of the CNN used to extract visual features from
hand images in S2CNN and S3CNN is shown in Fig. 4.

At training stage, a mini-batch gradient descent algorithm
based on the RMSprop adaptive learning rate method (with a
learning rate equal to 0.001) and a batch size of 2048 frames,
was used to estimate the CNN parameters. The categorical
cross-entropy was used as loss function. Over-fitting was con-
trolled using i) an early stopping strategy, i.e. 20% of the train-
ing set was used as a validation set and the training was stopped
when the error on this dataset stopped decreasing during 10
epochs, and ii) a dropout mechanism (with a dropout proba-
bility of 0.25). All models were implemented using the Keras
Python library [22] and were trained using GPU acceleration.
After training, a vector of visual features was extracted from
the CNN by taking the output of the fully-connected layer, just
before the output layer (the dimension of the extracted feature
is set as 64).

In the proposed CNN-HMM architectures, CNNs act as dis-
criminative feature extractors. In S1CNN, the single CNN mod-
els jointly lips and hand (position and shape). CNN is trained
in a supervised manner with 34 phonetic classes as targets. In
S2CNN and S3CNN, each CNN focuses on lips or hand separately
and was trained with either a set of 8 visemes as targets for lips
or a discrete set of 5 positions and 8 shapes for the hand. For
lips, the temporal segmentation of the lip image sequences into
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Figure 5: Illustration of the procedure proposed to derive the
temporal segmentation of the hand movements for the sentence
”Ma chemise est roussie”. (a) audio signal segmented at pho-
netic level, (b): segmentation of the hand position (encoding
vowels in CS), (c): segmentation of the hand shape (encoding
consonants in CS).

visemes was derived directly from the audio signal (the asyn-
chrony between lips and audio was here neglected). However,
in CS, the hand generally precedes the lips. [23] reported a
temporal advance of approximately one syllable (i.e. between
171 to 256ms). To take this phenomenon into account, a simple
procedure was therefore used to derive the temporal segmen-
tation of the hand stream from the temporal segmentation of
the audio stream. As illustrated in Fig. 5, the left boundary of
each phoneme (except the first phoneme) was extended to the
beginning of the previous phoneme. The boundary of the first
phoneme in each sentence keeps it as the audio based segmen-
tation. This procedure allowed us to train the CNNs efficiently.
Note that we recently proposed in [24] a method for predicting
an optimal temporal segmentation of hand movements from the
audio speech signal for each phonetic context. However, since
this method did not bring significant improvements here, we
kept the simpler procedure described above.

2.1.4. Hand position

In both S2PCA/CNN and S3PCA/CNN, the coordinates of the center
of the hand ROI were used as explicit additional features (we
recall that in CS the position of the hand encodes the vowel).
These values are then processed by a simple feed-forward neu-
ral network (ANN) with one single fully connected layer (with
ReLU activation function) and one output softmax layer, trained
with the very same procedure than the one used for CNNs.

2.2. HMM-GMM phonetic decoding

Sequences of visual features extracted using either PCA or
CNN (and ANN for hand position in S2 and S3) were mod-
eled, together with their first derivatives, by a set of context-
dependent triphone HMM-GMM (i.e. phone model with left
and right context). A standard topology was used with three
emitting states (with no connection between initial and final
state). HMM-GMMs were trained with HTK 3.4 [25]. The
number of components of each GMM emission probability was
iteratively increased from 1 to 4. In S1, a single stream HMM-
GMM was used to model visual features extracted from the
joint observation of lips and hand. In S2, lips and hand were
processed separately, and the three stream features were con-
catenated in a single feature vector (i.e. early fusion). In S3,
lips and hand information were combined at the state level
using a 3-stream HMM-GMM (middle fusion). The stream
weights were optimized empirically (i.e. only a few combi-
nations were tested) using cross-validation, and the optimal
weights were found to be 0.4 for lips, 0.4 for hand shapes

Table 1: Monomodal decoding experiments. Two CNN-HMM
for lips and hand shape, and a ANN-HMM for hand position
were evaluated on each modality considered independently.

Acc(%) 8 lips visemes 8 hand shapes 5 hand positions
CNNs-HMM 58.5 68.5 —
ANN-HMM — — 64.8

and 0.2 for hand positions. At decoding stage, the most likely
sequence of phonemes was estimated by decoding the HMM-
GMM state posterior probabilities using the Viterbi algorithm.
For the HMM-GMM phonetic decoding, the model insertion
penalty was optimized on the training set. Importantly, neither
pronunciation dictionary nor language model was used in this
study. In fact, we aimed at evaluating only the ability of the sys-
tem to extract the phonetic information from raw data without
any prior linguistic knowledge (indeed, the global performance
should be significantly higher when using such information).

3. Experiments
3.1. Database

A database was recorded for the present study. A professional
interpreter of CS (with no hearing impairment) was asked to
utter and encode simultaneously a set of 238 French sentences
(extracted from [26]). Each sentence was repeated twice re-
sulting in a set of 476 sentences (about 11770 phonemes to-
tally). Color video images of the interpreter’s upper body were
recorded at 50 fps, with a spatial resolution of 720x576 pixels
RGB images. Data acquisition was done in the sound-proof
room of GIPSA-lab, France. The French language was de-
scribed with a set of 34 phonetic classes (14 vowels and 20
consonants). The French CS was described with 8 lips visemes,
8 different hand shapes, and 5 different hand positions (as de-
scribed in [6]). The phonetic transcription was extracted auto-
matically and manually post-checked to adapt it to the pronun-
ciation of the CS interpreter. Importantly, the dataset is made
publicly available (see Section 6).

3.2. Protocol and metrics

In our experiments, 80% of the sentences were randomly cho-
sen to build the training set (with 20% used for validation), the
remaining 20% for test (since the recorded dataset contains rep-
etitions of the same sentences, we removed automatically from
the training set each sentence that was selected for testing). All
experiments were repeated 10 times, with each time, a differ-
ent random partitioning of the data. Two metrics were used
to assess the decoder performances: 1) the correctness of the
HMM-GMM decoder defined as Corr = (N − D − S)/N
with N the number of phones in the test set, D the number
of deletion error, and S the number of substitution errors, and
2) the accuracy of the HMM-GMM decoder Acc which takes
into account the insertion errors (I) and which is defined as
Acc = (N−D−S−I)/N . The statistical significance of these
measurements was assessed by calculating the Binomial pro-
portion confidence interval ∆95% (using the Wilson formula).

In addition to evaluating the performance of S1, S2 and
S3 architectures, we run an additional series of experiments,
referred to as the monomodal decoding. Two tandem CNN-
HMMs, one for lips, the other one for hand shape and one ANN-
HMM for hand position, were trained to classify each stream
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Table 2: Performance of the proposed architectures for auto-
matic recognition of continuous CS, concerning correctness and
accuracy. The temporal segmentation of hand streams men-
tioned in section 2.1.3 was used for CNN training. Confidence
interval ∆95% is about 4%.

S1PCA S1CNN S2PCA S2CNN S3PCA S3CNN

Corr(%) 45.2 55.0 50.9 68.3 51.0 73.3
Acc(%) 32.3 38.2 36.0 58.4 36.5 61.5

considered independently. Here, the HMM-GMM decoders
were respectively trained with visemes, hand shape classes and
hand position classes as targets. These experiments give some
hints on the discriminative power of extracted visual features.

3.3. Results and discussion

First, we report in Table 1 the results of the monomodal de-
coding experiments. We observe a relative homogeneity be-
tween the different modalities, even one can have expected a
better performance for the lip decoding task (however, these
results remain comparable with [27]). In order to further un-
derstand the behavior of the CNN-based feature extractor, we
show in Fig. 6 the output of the CNN processing hand images
in S2CNN and S3CNN for one test sentence (i.e. the sequence of
posterior probabilities for all possible hand shape classes). As
expected, the posterior probabilities evolve smoothly between
consecutive hand targets (with maximum value mostly achieved
when the target is reached). This motivates an explicit model-
ing of the dynamic of the extracted features, as performed by
the HMM-GMM decoder. Interestingly, the CNN seems to be
robust to small intra-class variation, e.g. between configura-
tions 3 (/d/) and 5 (/Z/) which were both correctly classified as
[p, d, Z] while the hand shape is quite different (due to gestures
co-articulation).

Figure 6: Top: Sequence of target hand shapes (i.e. key frames)
for the sentence ”voila des bougies”. Bottom: Corresponding
posterior probabilities for each group of hand-shape available
at the output of the CNN (blue corresponds to 0, yellow corre-
sponds to 1).

Then, we report in table 2 the global performance of the
different proposed architectures S1, S2, and S3. First, CNN
clearly outperformed PCA for all proposed architectures (e.g.

Acc = 36.5% vs. Acc = 61.5% in S3). This tends to validate
the gain of a non-linear and discriminative feature extraction
technique for this particular task. Second, the S1 architecture
gives much lower performance than S2 and S3. One possible
explanation for this unexpected result may be related to the dif-
ference of spatial resolution between lips and hand when con-
sidering only one ROI (i.e. the hand occupies much more space
than the lips). Extracting a dedicated ROI may help the CNN to
balance better the information carried by lips and hand. Third,
middle fusion of lips and hand modalities within the HMM-
GMM decoder outperforms the early fusion strategy (e.g. with
Acc = 58.4% in S2CNN vs. 61.5% in S3CNN). Again, this tends
to validate the gain of processing lips and hand independently.
Fourth, the performance in terms or Acc is about 10% lower
than the one regarding Corr. Despite the fact that the model in-
sertion penalty is optimized, too many insertion errors remain.
Indeed, this issue should be alleviated when using a language
model and a pronunciation dictionary. Finally, and even if a fair
comparison remains difficult since both studies are not based
on the same corpus, the proposed tandem CNN-HMM gives a
comparable score to the Corr = 74.0% obtained in [5]. How-
ever, let recall that [5] was based on isolated word and made use
of visual artifices to help lip and hand tracking while the present
study deals with continuous CS recognition from raw images.

4. Conclusions
This study investigated different CNN-HMM tandem architec-
tures for automatic cued-speech recognition. Importantly, we
focused on continuous cued-speech (i.e. connected words) and
did not use any artifices used to facilitate the extraction of visual
features. In its best configuration (i.e. S3CNN), and without ex-
ploiting any dictionary or language model, the accuracy at pho-
netic level is 62% (with the correctness of 73%). This makes
the proposed tandem architecture a good candidate for practi-
cal use. Future work will mainly focus 1) on the validation of
the proposed approach on more speakers, 2) on the use of a
language model to decrease the number of insertion errors, and
3) on the design of an end-to-end trainable model combining
CNN-based feature extractors with recurrent neural networks.
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