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Abstract
Speaker independent (SI) Tandem systems trained by joint opti-
misation of bottleneck (BN) deep neural networks (DNNs) and
Gaussian mixture models (GMMs) have been found to produce
similar word error rates (WERs) to Hybrid DNN systems. A
key advantage of using GMMs is that existing speaker adap-
tation methods, such as maximum likelihood linear regression
(MLLR), can be used which to account for diverse speaker
variations and improve system robustness. This paper inves-
tigates speaker adaptation and adaptive training (SAT) schemes
for jointly optimised Tandem systems. Adaptation techniques
investigated include constrained MLLR (CMLLR) transforms
based on BN features for SAT as well as MLLR and parame-
terised sigmoid functions for unsupervised test-time adaptation.
Experiments using English multi-genre broadcast (MGB3) data
show that CMLLR SAT yields a 4% relative WER reduction
over jointly trained Tandem and Hybrid SI systems, and further
reductions in WER are obtained by system combination.
Index Terms: Speech recognition, Tandem system, joint train-
ing, speaker adaptive training

1. Introduction
In recent years, deep neural networks (DNNs) have become key
components of speech recognition systems. DNNs can be used
to estimate the posterior probabilities for context-dependent
phone states, which are then converted into scaled likelihoods
for use as hidden Markov model (HMM) observation proba-
bilities. This configuration is referred to as DNN-HMM Hy-
brid system [1]. Another system configuration, referred to as
a Tandem system configuration [2], uses the activations from a
bottleneck (BN) hidden layer of a DNN as the input features
for a GMM-HMM model [3]. In contrast to Hybrid systems
whose parameters are all simultaneously trained, Tandem sys-
tems often have the GMMs estimated using a pre-trained BN
DNN. This issue can be addressed by jointly training BN DNN
and GMMs based on either the cross entropy (CE) [4, 5] or the
minimum phone error (MPE) criteria [6]. These jointly trained
speaker independent (SI) Tandem systems yield similar word
error rates (WERs) to SI Hybrid systems.

Tandem system outputs are often complementary to those
from Hybrid systems and hence are useful in system combina-
tion with Hybrid systems [7, 8, 6]. Furthermore Tandem sys-
tems can use the many GMM-HMM based speaker adaptation
[9] and adaptive training (SAT) [10] approaches, such as Max-
imum A Posteriori (MAP) [11], Maximum Likelihood Linear
Regression (MLLR) [12], and Cluster Adaptive Training [13].
By using a single linear transform to adapt both mean and vari-
ances of all models, adaptation can be applied at the feature
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level in constrained MLLR (CMLLR) [14]. When applied in
SAT, CMLLR transforms and GMMs are iteratively updated
to obtain better speaker-independent (SI) models, or canonical
models [13].

In addition to the GMM based adaptation approaches, tech-
niques that have been developed for DNN adaptation can also
be used with Tandem systems. These include the use of addi-
tional fixed-length input that encodes speaker-specific informa-
tion [15, 16, 17]. Another approach is to adapt some network
parameters, such as the DNN weights, to speaker-dependent
(SD) characteristics [18, 19], or adapt additional parameters as-
sociated with the activation functions [20, 21, 22, 23]. The SD
parameters can be trained at either the frame or sequence level
[24, 19, 6] with some regularisation [19, 25, 26].

This paper studies both SAT and unsupervised test-time
speaker adaptation for jointly trained Tandem systems. The
Tandem system joint training optimises the trained BN DNN
and GMMs using the MPE criterion [6] and updates parameters
using stochastic gradient descent (SGD). SAT operates during
the joint training stage by interleaving updates of the SI param-
eters with the CMLLR transforms. At test-time, unsupervised
adaptation is used to generate CMLLR transforms. In addition,
parameterised sigmoid activation function (p-sigmoid) as well
as model level MLLR transforms were also investigated. The
experimental evaluation is based on transcription of British En-
glish multi-genre broadcast (MGB3) data.

The rest of the paper is organised as follows. Section 2
briefly reviews previous work and Section 3 describes the pro-
posed methods. Sections 4 and 5 give the setup and results of
speech recognition experiments on the MGB3 task. This is fol-
lowed by conclusions.

2. Tandem Systems and SAT
2.1. Tandem system

A Tandem system uses a BN DNN to extract features for train-
ing GMM-HMM acoustic models. The BN DNN has a BN
layer whose size is normally much smaller than other hidden
layers, in order to generate compact output vectors that are suit-
able to be used as features in GMMs. In the lth layer of the
L-layer DNN, the activation al(t) at time t is given by

al(t) = Wlxl(t) + bl (1)

where xl(t) represents the input vector of the lth layer of the
DNN and Wl, bl are the weight matrix and the bias vec-
tor respectively. An activation function, fl (·), is then ap-
plied to transform the activation values to generate the output
of the layer. The commonly used activation functions include
sigmoid, fl (ali (t)) = (1 + exp(−ali (t)))−1, and ReLU,
fl (ali (t)) = max (0, ali (t)), where ali(t) is the ith element
of al(t). Denoting the output values of the BN layer as ybn(t),
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the likelihood of a state j in the HMM model is given by

p
(
ybn(t);µ(j),Σ(j)

)
=
∑

m

φ(jm)N
(
ybn(t);µ(jm),Σ(jm)

)

(2)
where φ(jm), µ(jm) and Σ(jm) represent the component
weight, mean vector and covariance matrix for Gaussian m of
state j. Thus, the likelihood of the GMM-HMM model in the
Tandem system is calculated using ybn(t) instead of the stan-
dard acoustic features. Furthermore, ybn(t) is sometimes con-
catenated with acoustic features, o(t), to form an alternative
type of input to the GMM-HMM model [2, 3]. Feature trans-
forms, such as Heteroscedastic Linear Discriminant Analysis
(HLDA) [28] and Semi-tied Covariance [29] transforms can
also be used to refine the concatenated features.

2.2. Maximum Likelihood Linear Regression

MLLR uses a regression class tree to dynamically specify each
group (or class) of HMM states, and creates a pair of linear
transforms to adapt the means and variances of all states in that
class by

µ̂(sm) = B(sc)µ(m) + c(s); Σ̂(sm) = H(sc)Σ(m)H(sc)T,
(3)

where s is a speaker and c is the class relevant to Gaussian com-
ponent m; B(sc) and c(sc) serves as the weight matrix and bias
vector of the mean transform; H(sc) is the covariance trans-
form. CMLLR constrains both mean and variance to use the
same transform. For CMLLR with only one class, the linear
transform can be presented as

µ̂(sm) = B̃(s)µ(m) + c̃(s); Σ̂(sm) = B̃(s)Σ(m)B̃(s)T, (4)

which can be achieved equivalently by transforming the input
features as

N
(
ybn (t) ; µ̂(sm), Σ̂(sm)

)
=

|B̃(s)−1|N
(
B̃(s)−1ybn (t)− B̃(s)−1c̃(s);µ(m),Σ(m)

)
.

(5)
Since |B̃(s)−1| is a constant for each speaker across all

states and hence does not affect state posterior or best path cal-
culations given the speaker s, a single class CMLLR transform
can be implemented as a speaker dependent affine transform
applied to normalise the input features, whose weight matrix
and bias vector are B̃(s)−1 and −B̃(s)−1c̃(s). Because of the
simplicity in implementation, CMLLR instead of MLLR is of-
ten used for SAT. During SAT, the adaptation transforms and
the canonical model parameters are updated in an interleaved
fashion until the estimate of the canonical model converges or a
desired number of iterations is reached.

2.3. Paramterised sigmoid based speaker adaptation

In addition to MLLR and CMLLR, this work also used the p-
sigmoid parameterised activation function adaptation approach
[23]. The p-sigmoid function for speaker adaptation used a
trainable output value scaling factor for each hidden unit, which
can be written as

f
(s)
i (ali(t)) = α

(s)
li / (1 + exp(−ali (t))) (6)

where i is the hidden unit index, s is a speaker, and α(s)
li is the

SD activation function parameter for speaker s and hidden unit

i at layer l. Only the first hidden layer activation function was
adapted in this paper as we observed overfitting when adapt-
ing more hidden layers in this task. Note that to stabilise the
adaptation, gradient clipping is required when training α(s)

li .

3. SAT and Speaker Adaptation of Jointly
Trained Tandem Systems

3.1. Joint MPE training of Tandem system

For the conventional Tandem system introduced in Section 2.1,
the BN DNN and the GMMs are trained separately, where the
BN features are not optimised for the GMMs. For the joint MPE
trained Tandem system, the DNN parameters {W1···L,b1···L}
and the GMM parameters {φ(jm),µ(j),Σ(j)} are trained con-
currently using SGD and the MPE criterion. During this train-
ing, not only are the GMMs are estimated using the BN features,
but the BN features are also optimised for the GMMs. The joint
MPE training procedure includes the following steps [6].

(i) A BN DNN is first trained using the CE criterion using
the alignments generated by a pre-trained system.

(ii) Once an initial BN DNN has been obtained, the layers
after the BN layer are removed. The BN layer activation
function is changed to the linear function to generate BN
features.

(iii) The BN layer linear activation function is converted to an
almost equivalent ReLU function by increasing the bias
values of the layer by six times the standard deviation of
the linear BN features.

(iv) A set of monophone GMM-HMMs are constructed using
a maximum likelihood (ML) criterion based on ybn (t),
the ReLU output values of the BN layer. These systems
are denoted BN-GMM-HMMs.

(v) The monophone BN-GMM-HMM system is extended to
an initial ML tied-state triphone GMM-HMM system
following the HTK recipe [30, 31], which is then re-
constructed using a two-model re-estimation method to
acquire more accurate state-level alignments to generate
better decision trees.

(vi) Finally, the BN DNN and the GMMs are jointly opti-
mised using SGD based on the MPE criterion.

Note that unlike the conventional Tandem systems whose deci-
sion trees are normally constructed based on the standard acous-
tic features, the decision trees for the BN-GMM-HMM system
are built based on the CE BN features, which is a better approx-
imation to the final MPE jointly trained BN features and can
have better performance [6]. Furthermore, to get good perfor-
mance with the SGD based MPE training, I-smoothing [32], the
use of a dynamic maximum mutual information (MMI) prior,
and percentile based variance flooring are all adapted from the
extended Baum-Welch (EBW) framework to the SGD based
framework [6]. Moreover, to make the model training stable and
effective, a number of methods, such as amplifying the GMM
learning rate and clipping the update values based on a relative
threshold are adopted [6].

3.2. Speaker adaptive training

According to Eqn. (5), the SD CMLLR transforms can be im-
plemented as affine transforms which are used to normalise the
BN features. In this paper, such CMLLR transforms are es-
timated using the traditional forward-backward algorithm, and
used by converting them to a special SD fully-connected DNN
layer with a linear activation function, whose weight matrix
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W
(s)
cmllr and bias vector b

(s)
cmllr are the same as those of the CM-

LLR affine transforms, i.e.

W
(s)
cmllr = B̃(s)−1, b

(s)
cmllr = B̃(s)−1c̃(s).

This SD CMLLR linear layer is inserted between the BN layer
and the GMMs, whose parameters are frozen during SGD based
joint training. In an analogous manner to traditional CMLLR-
based GMM-HMM SAT, the CMLLR transforms are updated
in an interleaved fashion after each SGD based joint training
epoch. The detailed steps taken to incorporate CMLLR-based
SAT to MPE joint training are listed below.

(i) Train the BN-GMM-HMM system using the ML cri-
terion and use this system to estimate an initial CM-
LLR transform for each speaker using the data from that
speaker;

(ii) Jointly train the BN DNN parameters and the GMM pa-
rameters using MPE criterion for one epoch, with the
weights and biases from the most recent SD CMLLR
transform inserted as an SD layer after the BN layer. The
parameters of the SD layer are switched to those of the
CMLLR transform for the current speaker, and are not
updated during the next epoch of joint training;

(iii) Re-estimate the CMLLR transforms for all speakers
based on the most recent MPE jointly trained BN fea-
tures and GMMs;

(iv) Repeat step (ii) and step (iii) until the training converges
or the required number of iterations is reached.

It worth noting that the CMLLR transforms are estimated
based on the optimised BN features instead of the standard
acoustic features. At test-time, the CMLLR transforms are esti-
mated iteratively in order using BN-GMM-HMMs generated at
the end of each epoch of the joint training in step (iii).

3.3. Unsupervised speaker adaptation

As well as test-time CMLLR transforms that are used with the
SAT models, MLLR and p-sigmoid activation function adapta-
tion methods are also used at test-time in an unsupervised fash-
ion. MLLR is applied since it can remove the constraint from
CMLLR based SAT and allows the use of multiple sets of lin-
ear transforms for each speaker and distinct transforms for the
GMM mean and variance values.

The use of p-sigmoid speaker adaptation is also investigated
in this paper since it has been observed to be complementary
to CMLLR and MLLR in previous studies [23]. In this paper,
p-sigmoid was used for test-time adaptation rather than SAT.
In contrast to previous work [21, 23] where the α(s)

li were es-
timated based on a DNN acoustic model with a softmax out-
put layer, here the p-sigmoid parameters were estimated using a
jointly trained Tandem model with a GMM output layer. To
be consistent with MLLR and CMLLR, ML based sequence
training rather than the CE based frame-level training [21, 23]
is used for p-sigmoid adaptation in this paper, where the par-
tial derivatives of the ML criterion w.r.t. the GMM observation
density function are the ML state occupancies calculated at the
sequence level using the forward-backward algorithm [6]. The
detailed steps for p-sigmoid adaptation consists of the following
steps:

(i) Generate phone sequence labels from the hypotheses us-
ing the target system for adaptation;

(ii) Initialise the α(s)
li for all speakers to 1.0, to make the p-

sigmoid functions start as standard sigmoid functions;
(iii) Find α(s)

li for all speakers using SGD based on the ML

state occupancies. SGD is used to update the α(s)
li once

per utterance.

4. Experimental Setup
Experiments were conducted using the data from the 2017 En-
glish Multi-Genre Broadcast (MGB3) challenge [33]. The data
consists of audio from BBC television programmes. The data
contains a wide range of genres such as comedy, drama and
sports shows. A total of 375 hours of audio data with associated
subtitles is available for acoustic model training. Lightly super-
vised decoding and selection was used to extract 275 hours for
training [34, 35, 8]. The reference segmentation was used with
automatic speaker clustering resulting in 192,209 utterances and
13,467 speaker clusters. A 5.5 hours development set, dev17b,
was also supplied. For this data set, an automatic audio segmen-
tation using a DNN based segmenter [36] trained on the MGB3
data was used and it resulted in 5201 utterances and 145 speaker
clusters. The dev17b data set was used to test the performance
of the systems and the results will be described in Section 5.

All experiments were conducted with HTK 3.5 [31, 27].
The GMM-HMM systems were trained on 52-dimensional
PLP+∆+∆2+∆3 features and around 9000 context dependent
(SD) states were used. The GMMs have 16 Gaussian compo-
nents per state, except for the 3 silence states, which have 32
Gaussian components per state. Both BN DNN and the Hybrid
DNN were trained on the 40-dimensional log Mel-filter bank
features which was expanded with ∆ features. A concatena-
tion of 9 consecutive feature vectors were used as the input
to the DNNs. Utterance level mean normalisation and show-
segment level variance normalisation were applied [8]. The BN
DNN had a structure 720× 10004× 39× 1000× 9000, where
the BN feature size is 39. The Hybrid DNN had a structure
720×10005×9000. Sigmoid activation functions were used in
both DNN acoustic models and BN DNNs. The Hybrid SI sys-
tem was first trained using the CE criterion and then sequence
trained using the MPE criterion [37].

For the conventional Tandem system builds, which is re-
ferred to as Tandem system in this section, the 39-dimensional
BN features were concatenated with the 52-dimensional PLP
features. An HLDA transform was applied for PLP features
and a global semi-tied transform was applied for BN features,
thus the combined dimensionality of the Tandem features was
reduced from 91 to 78. The Tandem SI system was trained using
the MPE criterion and the Tandem SAT system was built CM-
LLR followed by MPE. For the joint MPE training of the Tan-
dem system, which is referred to as joint-Tandem (J-Tandem)
system, the GMM learning amplification factor was set to 20
and the other aspects of the configurations were as described in
[6]. A trigram language model (LM) with a 64K word lexicon
was trained on the audio subtitles and 650M word tokens of sup-
plied BBC subtitles. All the systems outputs used the trigram
LM and confusion network (CN) decoding [38].

5. Experimental Results
5.1. Joint training of Tandem system

The WERs of Tandem, Hybrid and joint Tandem (J-Tandem) SI
systems are given in Table 1 which shows that both Hybrid and
J-Tandem systems give about a 10% relative WER reduction
(rWERR) over the Tandem system. The J-Tandem SI system
outperforms the Hybrid SI system by 0.2% absolute WER. It is
worth noting that while the J-Tandem WER is higher than the
interleaved time-delay DNN (TDNN) long short-term memory
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(LSTM) system tested on the same data set in [33], but the per-
formance gap is expected to be reduced by using more powerful
BN architectures (e.g. based on TDNNs or LSTMs).

System %WER
Tandem SI 28.6
Hybrid SI 25.9

J-Tandem SI 25.7

Table 1: %WER of speaker independent (SI) Tandem, Hybrid
and joint-Tandem (J-Tandem) MPE systems.

5.2. Speaker adaptive joint training of Tandem system

In this section, the performance of the Tandem SAT and J-
Tandem SAT systems are compared. In addition the CMLLR
test-set adaptation of the SAT models and the use of MLLR at
test-time are also investigated.

System CMLLR MLLR %WER
Tandem SI 7 7 28.6

Tandem SAT 3 7 26.3
3 3 25.8

J-Tandem SI 7 7 25.7

J-Tandem SAT 3 7 24.8
3 3 24.8

Table 2: %WER for Tandem SAT and Joint-Tandem systems
with CMLLR SAT and test-time MLLR. The adaptation supervi-
sion was from the Hybrid SI system.

The WERs for the Tandem SAT and J-Tandem SAT systems
are shown in Table 2. To allow a straight-forward comparison,
the adaptation supervision for both Tandem SAT and J-Tandem
SAT systems was taken from the Hybrid SI system in Table 1.
Table 2 shows that the use of CMLLR SAT training reduces the
WER of the Tandem SI system by 2.3% absolute and the test-
time MLLR speaker adaptive gives an additional 0.5% absolute
WER reduction, resulting in a 25.8% WER. For the J-Tandem
system, the WER reduction from SAT training is smaller than
that from the Tandem system. The WER drops from 25.7%
to 24.8% by using CMLLR SAT and in addition using MLLR
test-time speaker adaptation results in no further performance
gains. By comparing the Tandem SAT system and J-Tandem
SAT system, it can be seen that the J-Tandem SAT system gives
about a 4% relative WER reduction (rWERR) over the Tandem
SAT system. Similarly, there is about a 4% rWERR comparing
the J-Tandem SAT system to either the Hybrid SI or J-Tandem
SI systems.

System CMLLR MLLR Supervision
Hybrid J-Tandem

J-Tandem 3 3 24.8 24.7

Table 3: %WER for Joint-Tandem (J-Tandem) systems with CM-
LLR SAT and test-time MLLR using two different supervisions.

As can be seen from Table 1, the performance of the J-
Tandem SI system is slightly better than that of the Hybrid SI
system. Thus, a J-Tandem SI system can also be used to pro-
vide the adaptation supervision. Table 3 shows the WERs of
the J-Tandem SAT system when using either Hybrid SI or the
J-Tandem SI system outputs as supervision. It shows that us-
ing J-Tandem SI system as the supervision, the J-Tandem SAT
system is 0.1% better than that using Hybrid SI supervision.

One of the key reasons for using Tandem and J-Tandem sys-
tems is that they are complementary to Hybrid systems. The im-
provements from using confusion network combination (CNC)
[39] to combine the Hybrid SI system with the Tandem and J-
Tandem systems is shown in Table 4.

System %WER %rWERR

Hybrid SI ⊕ Tandem SI 25.5 1.5
SAT 24.5 5.4

Hybrid SI ⊕ J-Tandem SI 24.6 5.0
SAT 24.2 6.6

Table 4: %WER of CNC of Hybrid SI system and Tandem and
J-Tandem systems. The relative %WER reduction (%rWERR) is
calculated over the Hybrid SI system. ⊕ denotes CNC.

Table 4 shows that the CNC of the Hybrid SI system and
J-Tandem SI system gives a 5% rWERR over the Hybrid SI
system. When combining with Tandem SAT system, it gives an
additional 1.6% rWERR. In contrast, the CNC of Hybrid SI and
Tandem SI and SAT systems gives rWERRs of 1.5% and 5.4%,
respectively.

5.3. Combination of SAT and parameterised sigmoid
speaker adaptation

The combination of the SAT and p-sigmoid based test-time
speaker adaptation was also investigated for the J-Tandem SAT
systems and the results are shown in Table 5. The p-sigmoid
SD parameters are applied on the first hidden layer of the BN
DNN.

System CMLLR p-sigmoid %WER

J-Tandem

7 7 25.7
7 3 25.6
3 7 24.8
3 3 24.8

Table 5: %WER for Tandem and Joint-Tandem (J-Tandem) SI
and SAT systems with p-sigmoid speaker adaptation.

In the top half of Table 5, it can be seen that applying
p-sigmoid adaptation yields only 0.1% absolute WER reduc-
tion over the J-Tandem SI system. When applying p-sigmoid
speaker adaptation in addition to CMLLR on the J-Tandem SAT
system, as shown in the bottom half of the table, there is no per-
formance gain.

6. Conclusions
This paper has investigated the use of CMLLR-based speaker
adaptive training for a jointly MPE trained Tandem system. In
this system the bottleneck features and the Gaussian parameters
are jointly trained by SGD and in addition CMLLR transforms
are applied in both training and test. Furthermore the use of
p-sigmoid based unsupervised speaker adaptation was also in-
vestigated. Speech recognition experiments on the multi-genre
broadcast MGB3 data showed that the jointly trained Tandem
SAT systems could yield reductions in WER compared to the
conventional Tandem SAT system, and also a Hybrid SI system.
In both cases the jointly trained Tandem SAT system gave about
a 4% lower WER. Furthermore, jointly trained Tandem systems
are more complementary to Hybrid systems than conventional
Tandem systems, and reduce the error rates further when using
system combination. However, the combination of different un-
supervised speaker adaptation approaches did not yield further
improvements for the jointly trained Tandem SAT system.
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