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Abstract
Detection of infant emotional outbursts, such as crying, in large
corpora of recorded infant speech, is essential to the study of
dyadic social process, by which infants learn to identify and
regulate their own emotions. Such large corpora now exist with
the advent of LENA speech monitoring systems, but are not
labeled for emotional outbursts. This paper reports on our ef-
forts to manually code child utterances as being of type ”laugh”,
”cry”, ”fuss”, ”babble” and ”hiccup”, and to develop algorithms
capable of performing the same task automatically. Human la-
belers achieve much higher rates of inter-coder agreement for
some of these categories than for others. Linear discriminant
analysis (LDA) achieves better accuracy on tokens that have
been coded by two human labelers than on tokens that have been
coded by only one labeler, but the difference is not as much as
we expected, suggesting that the acoustic and contextual fea-
tures being used by human labelers are not yet available to the
LDA. Convolutional neural network and hidden markov model
achieve better accuracy than LDA, but worse F-score, because
they over-weight the prior. Discounting the transition probabil-
ity does not solve the problem.
Index Terms: infant vocalizations, infant emotional outbursts,
convolutional neural network, linear discriminant analysis, hid-
den markov model

1. Introduction
We are interested in studying the dyadic social processes by
which infants learn to express and regulate their own emotions.
An infant may cry, fuss, laugh, babble or hiccup spontaneously,
but she may also produce signals of this kind as part of a dia-
log, in which she seeks to evoke confirmation or comfort from a
nearby adult caregiver. It is possible that some fraction of emo-
tional outbursts are monologues (instinctive outbursts produced
with no consideration of an intended audience), and some frac-
tion are intended to be part of a dialog, and it is possible that
these fractions change over developmental time scales.

In order to study the dynamic changes in intent, it is nec-
essary to detect emotional outbursts (cry, fuss, laugh, hiccup
and babble) in a very large corpus of recorded infant speech.
Such large corpora do exist, but are not labeled with the level
of detail we require. Previous work has focused on infant cry
detection, or infant laugh detection, for applications like remote
infant monitoring or purposes of infant clinical psychology [1],
[2]. There is no such corpus or automatic detection algorithm
for this task of detecting infant emotional outbursts.

This paper reports on our novel infant-parent spoken inter-
action corpus collected by the Language Environment Analy-
sis (LENA) system, and our efforts to manually code child ut-
terances as being of type ”laugh”, ”cry”, ”fuss”, ”babble” and

”hiccup”, as well as to develop algorithms capable of perform-
ing the same task automatically.

When two human labelers independently annotate a set of
child vocalizations, they achieve much higher rates of inter-
coder agreement for some of the five categories than for others.
These differences suggest the ambiguity of the sounds between
the five categories as perceived by the human ear, and helps ex-
plain the possible errors in the machine classifier. We therefore
explore 3-way, 4-way and 5-way classifiers, by eliminating the
hiccup category, which does not have explicit implications for
the child’s emotional regulation, or combining the two classes
that are easily confused with each other, i.e. fuss and cry, to
eliminate the ambiguity.

In order to automate the annotating process of child utter-
ances, we explore the linear discriminant analysis (LDA) clas-
sifier on selected prosodic and spectral features of child utter-
ances, as well as the convolutional neural network (CNN) on
filter bank features of child utterances, following with a hidden
markov model (HMM) to learn the pattern of child utterance
sequences.

Linear discriminant analysis achieves better accuracy on to-
kens that have been coded by two human labelers than on to-
kens that have been coded by only one labeler, suggesting that
the acoustic and contextual features being used by human la-
belers are not yet available to the LDA. A 5-way LDA classi-
fier achieves much higher accuracy on tokens that have been
coded by two human labelers (69.33%) than tokens that have
been coded by one one labeler (55.68%). Yet, a 3-way LDA
classifier achieves similar accuracy on tokens coded by two la-
belers(73.89%) versus one labeler(72.73%).

Convolutional neural nets and hidden markov models
achieve better accuracy than LDA, but worse F-score, appar-
ently because they over-weight the prior. Discounting the tran-
sition probability does not solve the problem; no stream weight
has been found that causes the HMM to produce an F-score bet-
ter than LDA.

2. Infant-parent spoken interaction corpus
The participants in our corpus are drawn from a sample of fif-
teen families (9 female children; 6 male children). Children av-
eraged 17.67 months of age (SD = 3.5 months; range = 13 to 24
months). Families are recruited via distribution of study fliers
to local child care centers. Families are eligible to participate if
parents are native English speakers, only English is spoken in
the home, and children do not have any known hearing loss or
difficulties.

Protocols for the participation of human subjects in this re-
search were approved by the University of Illinois Institutional
Review Board.
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The LENA system, developed on over 18,000 hours of nat-
uralistic in-home recordings, has been validated for use with
children between 2 and 48 months of age [3]. LENA in-
cludes a light-weight digital recorder that is securely placed into
specially-designed child clothing and records the focal child’s
vocalizations as well as speech by family members for up to
16 hours, to capture a wide variety of parent-child interactions.
Audio data from the digital recorder are processed in the lab by
LENA software to automatically segment instances of the focal
child’s vocalizations, adult female speech, adult male speech,
and other child speech. The sampling rate of the LENA record-
ings is 16kHz.

3. Annotation
Five labelers are asked to annotate each of five families’ 16-
hour LENA recordings. Each audio recording is automatically
segmented by LENA system into instances of focal child’s vo-
calizations. The labeler is asked to annotate each child’s vo-
calization segments into one of the five categories: cry, fuss,
laugh, babble and hiccup. ”Fuss” is defined as whining or fuss-
ing that does not reach a full-blown cry. ”Babble” is defined
as non-intelligible speech that included consonant and/or vowel
sounds (e.g. baba, dada, oaahh). ”Hiccup” is a catch-all cate-
gory that included reflexive sounds (e.g. hiccup, cough, yawn)
or sounds that do not fall within one of the other categories. The
labeler is also responsible for adjusting the LENA segmentation
as needed, by deleting the incorrect segments, if the segment is
not the target child vocalizing, or modifying the boundaries of
the segment if the segment is either too long and contains other
speakers or noises, or so short that child speech is cutoff.

A limited number of segments from two of the recordings
are chosen to be annotated by two pairs of labelers. Each of the
labelers in a pair annotates the same segments independently,
and the result is used for the annotation reliability check.

Table 1 shows the annotations by labeler pairs, in terms of
the count of the annotation classes.

Table 1: Cross tabulation between annotations by labeler pairs

babble cry fuss hiccup laugh total
babble 143 1 3 25 0 172
cry 0 92 21 0 0 113
fuss 20 38 115 69 2 244
hiccup 8 0 0 61 3 72
laugh 2 2 10 15 81 110
total 173 133 149 170 86 711

Table 1 shows that labelers achieve much higher rates of
agreement for some of the categories than for others.

3.1. Balanced corpus

There are a total of 12768 child vocalization segments in five
16-hour LENA recordings, including 803 cry, 681 laugh, 2356
fuss, 1326 hiccup and 7602 babble annotations, which leads to a
highly unbalanced corpus. In order to create a balanced training
corpus with the same number of segments in each emotional
outburst class, while maximizing the total number of segments,
we keep the laugh class segments unchanged, which have the
fewest examples in the corpus. We then randomly select the
same number of examples from each of the other classes, to
make up our balanced corpus, consisting of 3405 examples in
total.

The smaller set of segments annotated by two labelers is
also balanced among the five classes by using the same tech-
nique, resulting into 97 segments for each of the classes, and
485 segments in total.

We have explored the 5-way, 4-way and 3-way classifiers.
A 4-way classifier is tested by eliminating the ”hiccup” cate-
gory, in order to focus only on the sound categories that have
implications for the child’s emotional expression and regula-
tion. When we explore the 3-way classifier, we further combine
the cry and fuss classes because they are easily confused with
each other and overlap conceptually. While making these modi-
fications, we keep the corpus balanced using the same technique
described above.

4. Method
4.1. Linear discriminative analysis

4.1.1. Feature selection

We define 64 prosodic and spectral features to represent each
child vocalization segment [4]. The open-source audio feature
extractor, openSMILE [5], is used to extract the 64 spectral and
prosodic features using a 30 ms Hamming window with 10 ms
overlap, with the emobase configurations. Table 2 shows the
features we extracted, and their statistical measurements or type
of descriptors.

Table 2: Spectral and prosodic acoustic features extracted using
openSMILE

Feature Descriptors
previous vocalization class class number
time duration of segments duration
f0 slope, offset,

mean, max,
zero-crossing rate
of log f0,
inter-quartile
difference

loudness mean, max/min,
inter-quartile
difference

probability of voicing probability
12 mel-frequency mean, max/min,
cepstral coefficients inter-quartile
(a range from 0 to 8kHz) difference
signal zero-crossing rate mean, max/min,

inter-quartile
difference

In order to maximize the power of features that are able
to discriminate between different emotional outbursts, we ap-
ply feature selection algorithms to select the most discrimina-
tive features. Sequential forward selection (SFS), sequential
backward selection (SBS), sequential floating forward selection
(SFFS) and sequential floating backward selection (SFBS) [6],
with LDA classifier measuring 5-fold accuracy upon balanced
dataset, are used to select the features.

The subset of 23 features obtained from SFBS algorithm re-
sult in the highest 5-fold LDA accuracy on the balanced dataset.
SFBS algorithm starts from the full set of features, and sequen-
tially removes the feature that least reduces the value of objec-
tive function. After each backward step of removing the fea-
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tures, SFBS performs forward steps by adding features from
the set of features previously removed, as long as the objective
function value increases.

Therefore, we define our prosodic and spectral features as
these 23 features: previous vocalization class, time duration of
segment, max value of f0, mean value of f0, slope of f0, zero-
crossing rate of log f0, mean value of loudness, max value of
loudness, probability of voicing, 4th MFCC mean value, 7th

MFCC mean value, 11th MFCC mean value, 3rd MFCC min
value, 7th MFCC min value, 3rd MFCC max value, 7th MFCC
max value, 1st MFCC inter-quartile difference value, 6th MFCC
inter-quartile difference value, 7th MFCC inter-quartile differ-
ence value, 9th MFCC inter-quartile difference value, signal
zero-crossing rate mean value, signal zero-crossing rate min
value and signal zero-crossing rate max value.

Different feature selection algorithms produced completely
different selected feature sets, but often with similar result-
ing classification accuracies. We speculate that the variability
among selected feature sets may indicate that different features
carry redundant information. If a feature selection algorithm se-
lects one of the features in a redundant set, then it does not need
to select any of the others; in this way it would be possible for
different feature selection algorithms to select non-overlapping
feature sets, yet achieve comparable accuracy.

4.1.2. Training and evaluation

We use 5-fold cross validation for the experiment. We randomly
split the balanced corpus, consisting of 3405 child vocalization
segments, into 5 folds, and consider each fold as test examples
once and the rest of the 4 folds as training examples. An LDA
classifier is applied to the 4-fold training examples each time,
to generate a linear decision boundary. The LDA model fits a
Gaussian density to each class, assuming that all classes share
the same co-variance matrix. The fitted model is then used to
predict the 1-fold test examples. For evaluation metrics, we
measure the average accuracy and F-score values between the
ground truth and predictions of vocalization segments across the
five 1-fold test examples.

4.2. Convolutional neural network

4.2.1. Training

A child vocalization audio segment is divided into non-
overlapping 500 ms frames. Each frame inherits all the labels
of its parent audio. The 500 ms frames are decomposed with
a short-time Fourier Transform applying 25 ms windows every
10 ms. The resulting spectrogram is integrated into 64 mel-
spaced frequency bins, and the magnitude of each bin is log-
transformed after adding a small offset to avoid numerical is-
sues. This gives log-mel spectrogram patches of 50 x 64 bins
that form the input to the convolutional neural network. During
training, we fetch mini-batches of 16 input examples by ran-
domly sampling from all patches.

4.2.2. Evaluation

We use the 5-fold cross validation to evaluate our detection task.
We divide the balanced corpus, consisting of 3405 examples,
into 5-folds randomly trained on 4-fold data, and tested on the
rest 1-fold data. For our metrics, we calculate the averaged ac-
curacy and F-score values across the five 1-fold test data.

In the evaluation process, each 500 ms frame from each
child vocalization audio segment is passed into the model, and

we average the classifier output scores across the frames in an
audio segment.

4.2.3. Architecture

Because our balanced dataset is relatively small, we apply a
shallow convolutional neural network to avoid the overfitting
issue. The 50 x 64 filter bank frame is passed through a stack
of convolutional layers, where we use filters with a receptive
field of 3 x 3, to capture local spatio temporal patterns in the
filterbank features. The convolutional stride is fixed to 1; the
spatial padding is carried out by max-pooling after each convo-
lutional layers, with kernel size of 4x4 and stride of 4. A stack
of convolutional layers is followed by a fully-connected layer
with 64 neurons; the final layer is the soft-max layer connected
to the class labels. All hidden layers use RELU non-linearities
[7],[8].

4.3. Hidden markov model

We believe that an infant is more likely to cry if her previous
emotion state is cry, but less likely to cry if her previous emo-
tion is laugh. Therefore, we propose to use HMM to capture
this pattern of the vocalization sequences. An HMM has the
ability to correct some of the predictions made by CNN model,
by explicitly representing the higher probability of consistent
label sequences [9],[10].

Because HMM works with sequential data in nature, we no
longer use the balanced corpus consisting of randomly sampled
child vocalization segments from LENA recordings. Instead,
we split the five 16-hour LENA recordings into four training
data sequences and one testing sequence. This division is re-
peated five times in a cross-validation sequence, so that each
recording is a test recording once.

The transition probability of the HMM is obtained from the
four manually labeled LENA recordings in the training fold,
capturing the probability of transitioning from one category to
another. The initial state probability is uniform.

The emission probability of each child vocalization obser-
vation given its emotion state label is obtained from the CNN
outputs. The CNN model trained by 4-fold examples from the
balanced corpus is applied to the 16-hour LENA testing record-
ing, to get the emission probability.

We use the Viterbi algorithm to generate the most likely
sequence of hidden emotion states, which is our classification
prediction of the 16-hour testing LENA recording.

For our metrics, we use accuracy and F-score to measure
the agreement between predicted labels and true labels for each
segment in the testing LENA recordings, and average the results
across the five LENA recordings.

5. Results
5.1. Linear discriminant analysis

Table 3 shows the averaged 5-fold cross validation F-score and
accuracy results by the LDA classifier on the balanced corpus.
Table 4 shows the averaged 5-fold cross validation F-score and
accuracy results by LDA classifier on the smaller balanced set
of waveform segments for annotations on which two labelers
agreed.

The result shows that LDA achieves better accuracy on to-
kens that have been coded by two human labelers than on to-
kens that have been coded by only one labeler, suggesting that
the acoustic and contextual features being used by human la-
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Table 3: Classification accuracy and F-score achieved by LDA
classifiers on balanced LENA corpus

Accuracy F-score
5-way classifier 55.68% 55.23%
4-way classifier 61.90% 61.27%
3-way classifier 72.73% 72.73%

Table 4: Classification accuracy and F-score achieved by LDA
classifiers on smaller balanced set of waveform segments with
annotations agreed on by two labelers

Accuracy F-score
5-way classifier 69.33% 69.23%
4-way classifier 75.42% 73.51%
3-way classifier 73.89% 73.40%

belers are not yet available to the LDA. The 5-way LDA clas-
sifier achieves much higher accuracy on tokens that have been
coded by two human labelers(69.33%) than tokens that have
been coded by one labeler(55.68%), whereas the 3-way LDA
classifier achieves similar accuracy on tokens coded by two la-
belers(73.89%) versus one labeler(72.73%).

Focusing on vocalizations that are clear to the human ear
(i.e., on which two labelers agree) helps to improve the accuracy
of the 5-way classifier, but not of the 3-way classifier. It may
be that this difference between the 5-way classifier and the 3-
way classifier is the result of the much larger number of tokens
omitted (due to labeler disagreement) for 5-way versus 3-way
classification. The 5-way classification task is more difficult for
human labelers, in the sense that there are a larger number of
tokens on which labelers disagreed.

5.2. Convolutional neural network and hidden markov
model

Table 5 shows the average 5-fold cross validation classification
accuracy and F-score values achieved by the 4-way and 5-way
CNN classifier on the balanced corpus. CNN on filterbank fea-
tures result in worse classification accuracy and F-score than
simple LDA on prosodic and spectral features.

Table 5: Classification accuracy and F-score achieved by CNN
classifiers on the balanced LENA corpus

Accuracy F-score
5-way classifier 45.36% 43.95%
4-way classifier 51.59% 49.94%

In order to add the contextual information about the pat-
tern of vocalization sequences into the CNN model, we explore
the CNN-HMM by taking the CNN probability outputs as the
emission probability for an HMM. Because we have five CNN
models for 5-fold cross validation, we apply each of them as the
emission probability model for an HMM on the 16-hour testing
LENA recording, and averaged five accuracy and F-score val-
ues for each testing sequence. The reported general accuracy
and F-score for classifiers with classifier cardinalities is mea-
sured as the average of five testing sequences. Table 6 and 7
show the classification accuracy and F-score values of the CNN
model only and CNN-HMM model on all LENA recordings.

We explore different stream weights � as multipliers of the

emission log probability to weight the relative classification im-
portance of the emission probability and transition probability.
In this table, the setting � = 0 is the setting in which the CNN
is completely ignored; under this setting, the HMM simply gen-
erates the sequence with the highest a priori probability, which
is the sequence that labels every segment as babble.

The results show that, for both the 4-way and 5-way clas-
sifier, CNN-HMM achieves higher accuracy than CNN and, in-
deed, approaches the accuracy of LDA, but achieves consid-
erably worse F-score than LDA, because they over-weight the
prior. However, discounting the transition probability by adjust-
ing the � value does not solve the problem. CNN-HMM F-score
values are always worse than the LDA F-score values.

Table 6: Classification accuracy and F-score achieved by 4 way
CNN-HMM on LENA recordings

CNN CNN-HMM
� 0 0.3 0.5 1 1.2
Accuracy 59.31 65.06 69.75 67.43 64.20 63.44
(%)
F-score 50.61 20.13 54.09 54.15 52.88 52.44
(%)

Table 7: Classification accuracy and F-score achieved by 5-way
CNN-HMM on LENA recordings

CNN CNN-HMM
� 0 0.3 0.5 1 1.2
Accuracy 52.82 58.30 63.55 61.24 57.82 57.13
(%)
F-score 46.86 14.86 46.38 48.50 48.82 48.75
(%)

6. Conclusion
In this paper, we have reported on our infant-parent spoken
interaction corpus with manual coding for infant emotional
outbursts. We developed the algorithms, including LDA on
prosodic and spectral features, as well as CNN-HMM on filter-
bank features, to automatically code the infant emotional out-
bursts. Human labelers achieve much higher rates of inter-
coder agreement for some of these categories than for others.
Eliminating the ”hiccup” category, which does not have ex-
plicit implications for the childs emotional regulation, or com-
bining ”fuss” and ”cry” categories, which are easily confused
with each other, helps to reduce the classification errors. LDA
achieves better accuracy on tokens that have been coded by two
human labelers than on tokens that have been coded by only
one labeler, suggesting that the acoustic and contextual features
being used by human labelers are not yet available to the LDA.
CNN-HMM achieve better accuracy than LDA, but worse F-
score, because they over-weight the prior.
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