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Abstract

We investigate a novel approach to spatial filtering that is adap-
tive to conditions at different time-frequency (TF) points for
noise removal by taking advantage of speech sparsity. Our ap-
proach combines a noise reduction beamformer with a mini-
mum variance distortionless response (MVDR) beamformer or
Generalized Eigenvalue (GEV) beamformer through TF poste-
rior probabilities of speech presence (PPSP). To estimate PPSP,
we study both statistical model-based and neural network based
methods, where in the former, we use complex Gaussian mix-
ture modeling (CGMM) on temporally augmented spatial spec-
tral features, and in the latter, we use neural network (NN) based
TF masks to initialize speech and noise covariance matrices in
CGMM. We have conducted experiments on CHiME-3 task. On
its real noisy speech test set, our methods of feature augmenta-
tion, TF dependent spatial filter, and NN-based mask initializa-
tion on covariances for CGMM have yielded relative word error
rate (WER) reductions cumulatively by 8%, 16%, and 25% over
the original CGMM based MVDR. On the real test data, the
three methods have also produced consistent WER reductions
when replacing MVDR by GEV.

Index Terms: noise robust speech recognition, MVDR beam-
former, GEV beamformer, noise reduction

1. Introduction

The performance of an automatic speech recognition (ASR)
system may degrade significantly in noisy environments. Mi-
crophone array beamforming has shown great potential in im-
proving ASR performance in noise [1, 2, 3, 4, 5]. In narrow-
band beamforming, to estimate a steering vector (SV) or a spa-
tial filter, eigen analyses can be made on the spatial spectral
covariance matrices of speech and noise. In the minimum vari-
ance distortionless response (MVDR) beamformer of [6, 4, 7], a
SV was estimated as the eigenvector associated with the largest
eigenvalue of the speech spatial covariance matrix in each fre-
quency bin. In the Generalized Eigenvalue beamformer (GEV)
of [8, 9], the filter was estimated as the generalized eigenvector
with the largest eigenvalue involving both speech and noise spa-
tial covariance to maximize signal-to-noise ratio (SNR). Speech
and noise spatial covariance matrices are usually estimated by
using time-frequency (TF) masks of speech. The TF masks can
be obtained by methods of statistical models [10, 6, 11] or neu-
ral networks (NN) [9, 12, 13]. The former does not need stereo
training data and it usually estimates masks independently for
each TF point, while the latter may require stereo data and it
jointly estimates masks over all frequency bins.

MVDR and GEV beamformers are well established as ef-
fective methods for enhancing speech from noise. However,
in real conditions, noticeable noises may still exist in their en-
hanced signals. To further remove noise, an alternative method
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is the speech distortion weighted multichannel Wiener filter-
ing (SDW-MWF) [14, 15, 16], a generalization of Multichan-
nel Wiener filtering (MWF), which provides a tradeoff between
noise reduction and speech distortion. SDW-MWF can be
viewed as a MVDR followed by a time-invariant post-filter [16]
that scales the MVDR output in each frequency bin, which may
not be optimal for sparse signal and time-varying noise.

In this work, we investigate a TF-dependent spatial filter-
ing approach and adapt the spatial filter design to speech and
noise conditions at different TF points. To do so, we first de-
rive separate filters with different aims: one aiming at capturing
target speech in a desired direction, which can be accomplished
by MVDR or GEV, and another aiming at maximally reducing
noise, which can be accomplished by a linear filter derived from
noise spatial covariance. We then combine the speech capture
and noise reduction filters via the posterior probability of speech
presence (PPSP) at each TF point to generate a TF-dependent
spatial filter. Furthermore, to improve the estimation of statisti-
cal model based PPSP, we incorporate a differential temporal
context to spatial spectral vectors in CGMM, and derive pa-
rameter updating formula based on Expectation-Maximization
(EM) algorithm. Additionally, we investigate using the NN-
based TF masks of [9] to improve the initialization of speech
and noise covariance matrices for CGMM.

In Section 2, we briefly review MVDR, GEV, SDW-MWF,
and two methods of TF mask estimation of [6, 9]. In Section
3, we describe the proposed TF-dependent filter and differential
context features for CGMM. We present experimental results on
CHIiME-3 [17] in Section 4, and draw conclusions in Section 5.

2. MVDR, GEV, SDW-MWF, and TF masks

In this paper, we use bold font for vectors and regular font for
scalars, with matrices specified explicitly.

2.1. MVDR and GEV beamforming

Letyyr:e=[yf.e,1,- yf,t,M]T denote the signal vector from M
microphones, where yy ¢ ; denotes the ¢-th microphone signal
at frequency f and time ¢, and (.)” denotes transpose. MVDR
minimizes the output energy while keeping a fixed gain in the
direction of the desired signal [18], whereas GEV maximizes
SNR in the output signal at the expense of speech distortion [8].

Given the spatial covariance matrices of speech and noise
P..(f) and P (f), the GEV filter is the eigenvector with the
largest eigenvalue of ®,,! (f)® .. (f). On the other hand, given
a unit gain on the desired signal and a SV hy, the MVDR filter
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Given a spatial linear filter wy, the enhanced signal Z ; is ob-
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with (.)* the conjugate transpose.

2.2. SDW-MWF

Using Woodbury identity [19], SDW-MWF can be decomposed
into MVDR followed by a postfiltering as [16]:
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where 031, ¢ and Uﬁm ¢ denote the speech and noise variances
in the MVDR output signal, respectively, and p is the tradeoff
parameter between speech distortion and noise reduction: larger
w1 results in more noise reduction at the cost of larger speech
distortion.

2.3. CGMM-based mask estimation

For statistical model based TF mask estimation, we adopt the
CGMM method in [6]. Let ys¢, + and ny,; denote an ob-
served signal, speech signal', and noise signal at (f, t), respec-
tively, with s, = s ,77 and ny = s, vy, where s% , is the
speech component, and 7% is the acoustic transfer function vec-
tor (ATF) from the speech source to the M microphones, and
st +and 7 are defined similarly.

The variables s% ;, and s’ ; are assumed to have zero-mean
complex Gaussian distributions, i.e., s%, ~ CN(0,¢%,) and
st ~ CN(0, 9% ,), with ¢% , and ¢7} , the variance of speech
and noise, respectively. Thus, s, and ny; are modeled as
s ~ CN(0,¢%,R}) and ngs ~ CN(0,¢%  R}), where
R; = r§(r§)" and R} = v} (r})". Accordingly, yy.: is
modeled by a CGMM with two-components, one for speech and
the other for noise. In practice, to accommodate for variations
in speaker and microphone positions, R and R} are treated as
full-rank covariance matrices [20].

The CGMM parameters are estimated by EM algorithm.
For the speech component, the model parameters are iteratively
updated as:

Ppe = [yfz (RY) yf,t] /M “
Rj= —— ) 7z‘tyf,t Yyr )
2 MG G DF
Fe= R T ©)

w - p(y; .10, 9%, R}) +wh - p(y;,10, 9% R})

where w} and w} are the mixture weights. When EM con-
verges, the posterior probability of speech, A% ;, is taken as the
local PPSP in our proposed local filter method (Section 3). The
noise parameters are updated similarly.

2.4. NN-based mask estimation

For NN based mask estimation, we review the method of bi-
directional long-short term memory (BLSTM) network in [9,
12] due to its good ASR performance. During its noise-aware
training, binary masks are used as training targets. The ideal

In [6], an observed signal was defined to be consisted of noisy
speech and noise. To avoid confusions, we use the term of speech and
noise instead.
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binary mask for speech, I BM x, and noise, I BM n, are defined
by

1 10thx ()
IBMx(t,f) =1 [|z[| /||| > 10 o

0, else,

1 10PN ()
IBMn(t, f) =4 " =]l/[n] < 10 ©

0, else,

where ||-|| is the Euclidean norm, thx (f) and thn (f) are two
different thresholds. During test, the masks obtained for each
channel are then condensed to a single speech mask and a single
noise mask using a median operation that reduces the effect of
outliers, such as broken channels. The speech and noise masks
are used as weights on spatial spectral vectors in computing the
spatial covariance matrices of speech and noise.

3. Proposed methods

We first describe the proposed TF-dependent spatial filter, and
then explain the proposed temporal augmentation to the spa-
tial spectral features for CGMM. In the following, we deal with
narrowband beamformers by default, so the frequency index f
is omitted when no ambiguity occurs.

3.1. Speech probability weighted spatial filter

Conventional beamformers, like MVDR or GEV, often use a
time-invariant filter in each frequency bin [5, 9, 4]. Such filters
are desired if the target signal always exists in the frequency
band. However, this is not true for speech as it is sparse in the
TF domain. Therefore, the beamformed signals often require a
followup postfiltering to reduce residue noise.

Here, to further reduce noises, we exploit the speech prop-
erty of sparsity and investigate the following approach to spa-
tial filter design: depending on the PPSP at a TF point, A% ;,
we swing the spatial filtering objective between speech capture
(like MVDR or GEV filters) and noise reduction. For noise re-
duction, we consider the following filter wy:

H

. H
wn, = argmin w Pp,w, st ww=1

w

(&)

The eigenvector with the minimum eigenvalue of ®,, is a
solution to Eq. (9). Admittedly, we can switch between
wyvor/weev and wy, with reference to a threshold of PPSP.
However, to avoid tuning the threshold, we adopt a soft-
switching approach. Specifically, we define the following spa-
tial filter for each (f, t) point:

we = (w.)" O (wa)' (10)
where w. can be wWggv Or Wwyor, Pt i the PPSP at (f, ) point,
and (.)? and ® denote element-wise power and multiplication
operations, respectively. Clearly, if p; =1, w; equals to w.; if
p: =0, wy is wy,; for intermediate values of p;’s, the combined
local filter would have a mixed effect on speech capture and
noise reduction. For the ¢’th microphone channel, the filter’s
phase is a weighted linear interpolation of the phases of w: ;
and wn, ;, and the magnitude is the weighed geometric average
of the magnitudes of w= ; and w, ;, with the weights being p;
and 1 — py, respectively.

In narrowband beamformers, usually only single speech
and noise covariance matrices are used to estimate spatial fil-
ters in each frequency bin [5, 9, 4]. In this case, the filters do
not adapt to time-varying noises that often occur in real condi-
tions. However, by using PPSP’s as the combining weight, our



proposed spatial filter (10) is able to change its objective from
speech capture to noise removal. Although it no longer guaran-
tees distortionless response in the desired signal, this weakness
is compensated for by more effective noise reduction.

3.2. Spatial spectral feature augmentation in CGMM

As the accuracy of local PPSP, A%, is important to the above
filter composition method, it is desired to improve the speech-
noise discriminative power of CGMM. In [6, 7], only TF-
specific spatial spectral vectors y; were used in local CGMMs.
Since neighboring spectra may provide additional discrimina-
tive information, we augment each center spatial spectral vector
by its temporal context. Specifically, a first-order time differ-
ence of y; with the step size |, Ay; = Ye4+1 — Y¢—1, is also
considered as a feature:

Ay, = Az + Ang = Aser” + Angr”

We see that in Ay;, the ATFs of speech and noise remain
unchanged. Therefore, Ax; and An; can be modeled by
CN (0, A¢f R}), and CN(0, Apy R}), respectively. For com-
putational convenience, we adopt block-diagonal covariance
matrices for speech and noise to model the augmented feature
vector, [yf Ayf]", in CGMM. Specifically, for the speech
component, its covariance matrix becomes:

[cﬁitR””

3
0 ¢35, R*

and its CGMM parameter update formulas are derived as :

ot = [l (B) "y | /M an
95, = [yl (R Ayi| /M (12)
R = ——— A + 13

e e, W

For noise, its covariance matrix and its formulas for param-
eter updates are similarly defined and derived.

4. Experiments and Results

The CHIiME-3 task covered four noisy environments: cafe
(CAF), street (STR), public transport (BUS) and pedestrian area
(PED). Real noisy speech data had 1600 utterances which were
supplemented by 7138 simulated noisy speech utterances for
acoustic model training. Test data also had real and simulated
noisy speech and consisted of the 330 sentences as in the WSJO
5k task. Data details are described in [17].

4.1. Experiment Setup

In the setup for speech recognition, we used the CHiME-3 base-
line backend in Kaldi [21] without any modification.

In the setup for beamforming, we evaluated our proposed
methods in two cases: one only used CGMM to estimate PPSP,
the other used NN-based masks to initialize the speech and
noise covariances for CGMM and the converged CGMM was
used to estimate PPSP.

When CGMM alone was used to estimate PPSP, we largely
followed the setting in [6] but added the following refinements.
Before CGMM initialization, the microphone channel with the
highest SNR was determined. Within the first and last 25 frames
of this microphone signal and in each frequency bin, noise TF
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points were detected and used to initialize noise covariance, and
these TF points were fixed as noise during EM iterations, while
the rest points were used to initialize speech covariance. In fea-
ture augmentation, the step size [ was set to 2 to avoid temporal
overlap between contextual vectors (the frame shift was 25% of
frame size). Note that the augmented features were not used in
Eq.(2) or parameter initialization.

We adopt the NN-based masks in [9, 12] due to its reported
good performance for ASR. Empirically, we found that these
masks could not be used directly as PPSP in (10). This might
be due to the 0-1 binary target setting in NN training (Eq. (7,
8)), and the separate estimation of speech and noise masks that
does not guarantee the sum-to-one constraint. Although the
mask scores computed during test were continuous and normal-
ized within [0,1], they did not work well as PPSP’s. On the
other hand, to take advantage of the smooth TF masks produced
by NN due to its estimating masks jointly across frequency
bins, we investigated using the NN-based masks to initialize
the speech and noise covariances for CGMM. Specifically, the
NN-based masks were first used to detect noise TF points at
the two ends of each utterance: points with a noise score larger
than 0.9 were fixed as noise in EM iterations of CGMM. These
noise points together with the rest NN-based masks were used
for noise and speech covariance initialization in CGMM.

4.2. Experiment Results

Our ASR results are summarized in word error rate (WER) for
the simulated and real test data. We first evaluated the proposed
feature augmentation when CGMM-based masks were used
alone, and compared it with the CHiME-3 baseline Beamfor-
mlt [22]. These results are given in Table 1, where “MVDRA”
and “GEVA” denote using the augmented features.

Table 1: WERs (%) of baseline, MVDR, GEV, with and without
feature augmentation

eval real
BUS [ CAF | PED | SIR | AVG

eval simu
CAF | PED | STR | AVG

BUS

baseline | 8.7 } 131 [ 129 [ 149 | 124 | 188 | 105 | 103 | 98 | 124
[ MVDR [ 48 [ 65 [ 54 [ 77 ] 6.1 [ 166 ] 84 [ 68 [ 83 [ 10.0 ]
[MVDRA | 44 | 54 | 56 | 82 | 59 | 156 | 69 | 62 | 81 | 92 |
[ GEV [ 46 [ 53 | 56 | 78 [ 58 [ 140 74 | 70 [ 75 | 90 |
[ GEVA | 42 | 48 | 55 | 74 | 55 | 122 | 78 | 68 | 78 | 86 |

In Table 1, the average WERSs by our MVDR on simulated
and real data was 6.1% and 10.0%, respectively, which greatly
lowered the baseline WERs, indicating the effectiveness of the
approach of [6]. These two figures were better than the cor-
responding figures of 6.96% and 10.37% of [6] with five mi-
crophones used in beamforming. A possible reason was that
our noise spatial covariance initialization was more informa-
tive than the identity matrix based initialization in [6]. On
the other hand, GEV performed better than MVDR. One likely
reason was the better numerical stability of GEV over MVDR
[12]: while MVDR needed matrix inversion, GEV did not. In
addition, we observed that in the GEV beamformed signals,
the lower frequency components appeared to be attenuated ap-
preciably, which was beneficial to conditions with strong low-
frequency noise, like BUS. This might be another reason why
GEV was better than MVDR in this task.

On the other hand, comparing MVDR with MVDRA or
GEV with GEVA, feature augmentation further reduced aver-
age WERs, suggesting its benefit in boosting the discriminative
power of CGMM. In the subsequent experiments, feature aug-
mentation was used in CGMM by default.



In Table 2, we provide WER for the proposed TF-dependent
filters, where MVDRA* and GEVA* indicate that MVDR and
GEV filter were used in (10), respectively. In addition, we com-
pared MVDRA* with SDW-MWF. Based on Eq. (3), our imple-
mentation of SDW-MWF was actually MVDRA followed by a
post-filter, where the tradeoff parameter p was set to 0.5 and 1,
respectively, denoted as MWFO0, and MWF1. In the post-filter,
the speech and noise power spectrum density (PSD) estimation
was based on [23]. For convenience of comparison, results for
MVDRA and GEVA were repeated.

Table 2: WER (%) of proposed local filtering and SDW-MWF

eval simu eval real
BUS | CAF | PED | STR | AVG | BUS | CAF | PED | STR | AVG
MVDRA 4.4 54 5.6 8.2 5.9 156 | 6.9 6.2 8.1 9.2
MWF0 4.5 54 5.0 7.5 5.6 160 | 6.8 6.2 7.6 9.1
MWF1 4.2 54 5.9 7.9 5.9 168 | 6.8 6.2 8.2 9.5
MVDRA* | 54 5.9 5.3 7.7 6.1 138 | 6.1 6.5 7.2 84
[ GEVA [ 42 | 48 | 55 | 74 | 55 [ 122 | 78 | 68 | 78 | 86 |
[ GEVA* | 50 | 61 | 60 | 76 | 62 | 124 | 67 | 57 | 77 | 81 |

Comparing MWFO, MWF1 with MVDRA, it appeared that
SDW-MWEF did not reduce WER significantly. A possible rea-
son was that the noise being non-stationary and hence the noise
PSD was difficult to model. On the other hand, comparing
MVDRA with MVDRA*, or GEVA with GEVA*, we found
that our TF-dependent filters worked effectively on real data. In
comparison with MVDR in Table 1, MVDRA* got 16% relative
WER reduction on real test data. To better understand the pos-
itive effect of the noise reduction filter w,, in WER reduction,
we examined the estimated filter component values and found
that the magnitude of the individual components correlated with
the relative noise strength in the multi-channels: a larger mag-
nitude was correlated with a lower level of noise in a channel.
As the result, according to (10), a cleaner channel would make
a larger contribution to the beamformed signal. That said, more
careful analysis is still needed in a future study.

On the other hand, the local filter methods slightly in-
creased WER on simulated data. Clearly, better performance on
real data is more valuable for real applications. A further exam-
ination revealed that MVDR and GEV tended to remove noises
much better in simulated data than in real data: the beamformed
simulated data tended to have larger SNR than beamformed real
data. As the result, noise corruption in simulated data was less
an issue after MVDR or GEV, but speech distortion due to the
TF-dependent filtering became noticeable, which might be sig-
nificant if the PPSP’s were inaccurate at some TF points. This
points to the need for further improving the robustness and de-
sign of our filter in Eq. (10). One possibility along this line is
to derive more accurate PPSP from the beamformed signal of
MVDR or GEV, and then use the PPSP in Eq. (10).

Table 3: WER (%) of local filtering with NN-based masks for
CGMM initialization

eval simu eval real
BUS | CAF | PED | STR | AVG | BUS | CAF | PED | STR | AVG
MVDRAR 4.4 6.2 5.6 6.6 5.7 13.0 7.3 6.9 7.4 8.6
MVDRAn* | 4.2 6.2 5.9 6.7 5.7 11.8 [ 6.0 5.9 6.5 7.5
[ GEVAn | 42 | 54 | 52 | 59 [ 52 [104] 69 | 55 | 66 | 74 |
[ GEVAn* | 44 | 62 | 54 | 68 | 57 | 95 | 64 | 58 | 64 | 70 |

In Table 3, the NN-based TF masks were used to initialize
the speech and noise covariance matrices for CGMM and all
methods were tagged by “n” to indicate this setting. Comparing
results of Table 3 with Table 2, we found that all methods gained

benefit from this initialization as it led to better PPSP estimates.
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Compared with MVDR in Table 1, MVDRAnR* obtained 25%
relative WER reduction on real test data. On the other hand,
our GEVAn on real test data had 7.4% WER, while in [12]
GEV had a WER of 7.45%, which directly used the NN-based
masks to calculate its filters. Although using NN-based masks
to initialize CGMM did not affect WER of GEYV, the probability
weighted beamformer further reduced the WER to 7.0%.
Finally, we summarize the performance in WER on the real
test data in Fig. 1 for MVDR/GEYV and our proposed methods.
With the successive introduction of feature augmentation, TF
dependent filter, and NN mask based initialization, the WER is
decreased progressively for both MVDR and GEYV, and the total
relative WER reduction was 25% for MVDR and 22% for GEV.
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Figure 1: WER comparison of (a) CGMM based MVDR/GEV;
(b) with feature augmentation in CGMM; (c) TF dependent fil-
ter with feature augmentation; and (d) TF dependent filter with
Sfeature augmentation and NN mask based initialization

It is worth noting that presumably, using soft masks as tar-
gets in NN training might produce mask scores more compati-
ble with the PPSP’s for filter composition in Eq. (10). On the
other hand, unlike CGMM, NN-based methods such as [12] do
not exploit the ATF model that may facilitate discrimination be-
tween speech and noise. Our approach of using NN masks to
initialize CGMM provides a way to utilize both the spectral-
temporal context-dependent scores provided by NN and the ex-
plicit ATF modeling by CGMM.

5. Conclusions

In this paper, we have introduced a TF-dependent spatial filter
that focuses on speech capture or noise reduction dynamically
according to PPSP at different TF points. This method takes
into consideration of speech sparsity in TF domain and attempts
to remove noise more aggressively than MVDR or GEV alone.
To better estimate PPSP under CGMM, we have augmented
spatial spectral vectors by their contextual vectors. We have
further investigated using the NN-based TF masks to initialize
the speech and noise covariance matrices for CGMM. We have
achieved word error reductions with each of these methods. On
the real test set of ChiME-3 task, our methods of feature aug-
mentation, local spatial filter, and NN-based mask initialization
on covariances for CGMM have cumulatively yielded relative
word error rate reductions of 8%, 16%, and 25% over our imple-
mentation of CGMM based MVDR of [6]. The three methods
have also produced consistent word error rate reductions when
GEV was used in place of MVDR on real test data. In a fu-
ture work, we plan to further improve the probability weighted
beamformer and investigate its performance in heavier rever-
beration conditions than those of CHiME-3.
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