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Abstract 
The ability to non-invasively estimate cognitive fatigue and 
workload as contributing factors to cognitive performance has 
value for planning and decision making surrounding human 
participation in cognitively demanding situations and 
environments.  Growing evidence supports the use of speech as 
an effective modality for assessing cognitive fatigue and 
workload, while also being operationally appropriate in a wide 
variety of environments. To assess ability to discriminate 
changes in cognitive fatigue and load from speech, features that 
measure speech onset time, speaking rate, voice quality, and 
vocal tract coordination from the delta-Mel-cepstrum are 
evaluated on two independent data sets that employ the same 
auditory working memory task. Feature effect sizes due to 
fatigue were generally larger than those due to load. Speech 
onset time, speaking rate, and vocal tract coordination features 
show strong potential for speech-based fatigue estimation. 
Index Terms: vocal biomarkers, cognitive fatigue, cognitive 
load, phoneme and pause duration, articulatory coordination 

1. Introduction 
Cognitive performance is affected both by a person’s cognitive 
workload and their cognitive fatigue. Cognitive workload refers 
to the mental demand experienced for a task, determined by  a 
person’s effort level and cognitive capacity, intrinsic task 
difficulty, and presence of extraneous distractors [1]-[3]. 
Cognitive fatigue is a subjective experience of mental 
weakness, closely associated with increased somnolence [2], 
but also reduction in cognitive capacity, which is a slowing or 
lessening of ability to perform cognitive tasks [4], including 
reduction in working memory capacity, reduced reaction time 
and insensitivity to external stimuli.  

The ability to estimate cognitive fatigue and workload 
independently, or as joint contributing factors to cognitive 
performance, has value for planning and decision making 
surrounding human participation in cognitively demanding 
situations and environments.  Moreover, the ability to estimate 
these factors noninvasively is critical, because such situations 
often cannot tolerate interruptions or distractions.  For instance, 
the pressures of military training and operations demand high 
cognitive workload, and high levels of cognitive fatigue are 
likely.  Accurate estimates of cognitive status may inform 
mission planning and command decisions, as well as the role 
for and proper interaction with augmenting/autonomous 
 

systems.  At the same time, well-established tests, such as the 
Psychomotor Vigilance Task (PVT), are inappropriate for such 
situations because they are obtrusive, requiring individuals to 
disengage from their primary task and attend to the test itself. 
Growing evidence supports the use of speech as an effective 
modality for assessing cognitive fatigue and workload, while 
also being operationally appropriate in a wide variety of 
environments [5]-[10]. 

Specifically, prior study of intra-individual change in 
speech over a period of sustained wakefulness found increased 
total speech time, mean pause length, and total signal time in 
fatigued speech [5]. Prior study of high and low cognitive load 
discrimination showed greater than 90% accuracy using 
features capturing articulatory source coordination [6], [11]. 
Building off this work, we sought to investigate the 
differentiability of both high and low cognitive fatigue and load 
conditions from vocal biomarkers capturing timing, voice 
quality and articulatory coordination. 

The paper is organized as follows. Section 2 describes the 
data collection from two independent studies of speech during 
an auditory working memory task, including derivation of 
cognitive load and fatigue level labels. Section 3 describes 
speech feature extraction and effect size methodologies. 
Section 4 presents the effects of cognitive load and fatigue on 
feature distributions in each study, compares the results, and 
discusses insights gained. Section 5 provides conclusions and 
directions for future work 

2. Methods 
This paper analyzes data from two independent experiments, 
which employ the same auditory working memory task, to test 
cognitive fatigue and load discrimination from audio-based 
speech features. Study 1 is an approximately two-hour exercise 
proctored in laboratory conditions. Study 2 is a daily “take-
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Table 1: Key study differences 
Study Study  1 Study 2 
Conditions Laboratory non-laboratory 
Collect frequency one-time daily 
# consecutive 
trials 

324 (total) 10 (per day) 

Duration ~2 hours 5-23 days** 
High/low load n / n-2 digits* 5 / 0 digits 
High/low fatigue second / first 

half of trials 
Low / high 

reaction speed  
*where n is a subject-specific calibrated value    **see Table 3 
 

Interspeech 2018
2-6 September 2018, Hyderabad

1756 10.21437/Interspeech.2018-2418

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/2418.html


home” exercise repeated for several days. Both experimental 
protocols test auditory working memory by requiring the 
subject to recall a sentence while holding a number of digits in 
memory. This task is henceforth referred to as the digit span 
task [12]. A single trial of the digit span task comprises a subject 
hearing a string of digits, then a sentence, then two tones 
eliciting spoken recall of the sentence, and then the digits. The 
multi-talker PRESTO sentence database is used for sentence 
stimuli [13]. Speech features are extracted from the repeat 
sentence interval.  

Different load conditions are induced by changing the 
number of digits being held in working memory. The Study 1 
protocol induces cognitive fatigue by consecutive repetition of 
324 digit span trials, resulting in increasing stress on auditory 
working memory (thus increasing cognitive fatigue) over time. 
Study 2 records subjects’ “naturally occurring” cognitive 
fatigue level via a psychomotor vigilance test (PVT) taken after 
the working memory task. Following are details about each 
experiment protocol. 

2.1. Study 1 protocol 

Data was collected from 16 native English speaking subjects (8 
male, 8 female), with mean age 36.3 years, in laboratory 
conditions. A working memory-based protocol approved by the 
MIT Committee on the Use of Humans as Experimental 
Subjects (COUHES) was followed. After setup and training, 
each subject engaged in 108 digit span task trials at each of three 
cognitive load difficulty levels [14], [15], [12]. Each difficulty 
level used the same set of 108 unique sentences and the order 
of the resulting 324 trials was randomized. An initial calibration 
test was done to assess each subjects’ ability in the working 
memory test. The maximum number of digits a subject is able 
to recall, with 71% accuracy, was estimated using a two-up one-
down adaptive tracking algorithm [14]. This maximum number, 
n, was determined to be: 4 (for four subjects), 5 (six subjects), 
6 (four subjects), and 7 (two subjects). For the analyses 
presented in this paper, the trials from two load difficulty levels 
(n and n-2) were used, 216 trials in total. Audio data was 
collected with a DPA acoustic lapel microphone (with a Roland 
Octa-Capture audio interface) and a 44 kHz sampling rate. 

2.2. Study 2 protocol 

Data was collected on a daily basis from four male, native 
English speaking subjects, with mean age 35.5 years, in the 
location of their choosing (often a home or work environment). 
Duration and consistency of daily participation varied between 
subjects (see Table 3). Following an MIT COUHES-approved 
protocol, subjects performed several tasks, including working 
memory and reaction time tasks. On an iPod touch (with an 
audio sampling rate of 44 kHz), subjects completed ten 
consecutive trials of the digit span task each day: five trials with 
five digits for recall, and five trials with zero digits for recall 
(i.e., hear sentence, repeat sentence). A 15-second recording 
window was used to capture the subjects’ repetition of each 
sentence. Subjects were instructed to take a PVT test, using a 
custom-built PVT device, soon after completing the digit span 
exercise. One day of data is referred to as one session. 

2.3. Data labeling 

Every digit span task trial is labeled as “high” or “low” for both 
cognitive load and cognitive fatigue conditions. In Study 1, the 
first half of the trials are labeled as low cognitive fatigue, and 
the second half as high fatigue. High or low cognitive load 

conditions were defined as an n or n-2 digit task, respectively, 
where n is the maximum number of digits which can accurately 
be recalled by a subject. In Study 2, cognitive fatigue labels are 
assigned by PVT reaction speeds. A measure of mean 
reciprocal reaction time is calculated from the PVT data 
recorded in a session by discarding reaction times outside of 
100-500 ms (anticipations or lapses) and taking the average of 
reciprocal reaction times. The resulting reaction speed values 
were normalized to zero mean within subject. A k-means 
clustering algorithm (where k = 2) was applied, separating the 
data into high and low reaction speeds, corresponding to low 
and high cognitive fatigue level labels for each session. High 
and low cognitive load conditions are defined as a five digit or 
zero digit task, respectively. 
 

3. Feature Extraction  
 

 3.1. Low-level feature extraction 

Preprocessing: In Study 2, due to the fact that audio recordings 
were done using a non-laboratory protocol, some low quality 
recordings needed to be filtered out. Trials were discarded if 
they contained serious recording problems (e.g., a second voice 
in recording) or incomplete recordings. This procedure resulted 
in eliminated sessions or fewer than 10 trials in a session.  
Audio files were denoised using an MMSE-based speech 
enhancement routine, and denoised files were trimmed to 
eliminate pre- and post-speech silence using a custom speech 
activity detector. 

Phonemes: An automatic phoneme recognition algorithm [16], 
for Study 1, and a forced alignment algorithm, for Study 2, were 
used to detect phonetic boundaries in each sentence recording. 
Each segment was labeled with one of 41 phoneme classes: 40 
ARPABET phonemes, plus a custom class for first and last 
pause. 

Cepstral peak prominence (CPP): CPP is an acoustic measure 
with strong reported correlations to overall dysphonia 
perception, breathiness, and vocal fold kinematics, which does 
not rely on an accurate estimate of fundamental frequency [17]. 
CPP measures the decibel difference between the noise floor 
and the magnitude of the highest peak in the power cepstrum 
for quefrencies greater than 2 ms (corresponding to a range 
minimally affected by vocal tract–related information) [17]. In 
Study 1, CPP was calculated with a window size of 20 ms, and 
40.96 ms in Study 2. 

Creaky voice probability (Creak): A creaky voice quality 
(vocal fry, irregular pitch periods, etc.), is characterized using 
acoustic measures of low-frequency/damped glottal pulses 
[18]. A frame-based measure of creak posterior probability is 
calculated as in [6], using a fusion of short-term power (4 ms 
windowing), intraframe periodicity (32 ms window), inter-
pulse similarity, and two measures of the degree of sub-
harmonic energy (reflecting the presence of secondary glottal 
pulses) and the temporal peakiness of glottal pulses with long 
period. 

Harmonics-to-noise ratio (HNR): Applying the techniques 
described in [17], a spectral measure of short-time harmonics-
to-noise ratio, which is the ratio (in dB) of the power of the 
decomposed harmonic signal and the power of the decomposed 
speech noise signal, was computed. In Study 1, a measure of 
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HNR is computed with a window size of 20 ms. In Study 2, two 
different measures of HNR are computed (and included in the 
aggregate vocal features): one with a window size four times 
the period and one with a window size of 40 ms. 

Low-to-high frequency spectral ratio (LH ratio): LH ratio is 
calculated as the difference between spectral power below and 
above a cutoff frequency, for 8 cutoff frequencies: every 1kHz 
from 1-8kHz [19]. A 40 ms window size was used. 

Delta Mel-frequency cepstral coefficients (dMFCCs): 16 
MFCC channels are computed and delta MFCCs [20], 
generated by differencing across consecutive 10 ms frames, are 
used to characterize velocities of vocal tract spectral 
magnitudes. 

3.2. High-level features 

Speech onset time: Using the phoneme boundaries, the duration 
of the first pause before speech onset is recorded as speech 
onset time. For Study 2, the mean speech onset time per session 
is calculated. 

Overall speaking rate: Overall speaking rate is calculated from 
the phoneme durations as total number of phonemes divided by 
sentence duration, excluding first pause. 

Aggregate vocal features: Low-level vocal features (CPP, 
creak, HNR, and LH ratio) were calculated on a frame-by-frame 
basis for each audio recording. Feature values – from one trial, 
in Study 1, and from all sentences in each load condition a 
session, in Study 2 - are pooled and summary statistics (mean, 
median, standard deviation, skewness, and kurtosis) are 
calculated. PCA was employed to reduce dimensionality of the 
features to one. 

dMFCC correlation structure: Measures of the structure of 
correlations among low-level speech features have been applied 
in the estimation of depression, performance associated with 
dementia, and changes in cognitive performance associated 
with mild traumatic brain injury [6]. Correlation structure refers 
to the rank-ordered eigenvalues of correlation matrices and, 
thus, shape of distribution independent of data axes. The 
differences in dMFCC eigenspectra patterns due to high or low 
cognitive fatigue and/or load reflects the effect of each 
condition on coordination of vocal tract trajectories.  PCA was 
employed to reduce dimensionality of the features to one. 

3.3. Effect size calculation 

Effect sizes of high-level features are used to quantify the 
difference in feature distributions across fatigue and load 
conditions. Effect size quantifies the difference in the means of 
two distributions relative to their standard deviations [21]. As 
such, it is advantageous for analyzing modest datasets (like 
Study 2) and observations of inter-subject variability.  

Hedges’ g effect size across classes A and B is given as:  
 

𝑔𝑔 = 𝑥𝑥𝐴𝐴���� − 𝑥𝑥𝐵𝐵����
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗   (1) 

 
where the pooled standard deviation (for two independent 
samples) is defined as [22]: 
 

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗ =  �(𝑛𝑛𝐴𝐴−1)𝜎𝜎𝐴𝐴2+(𝑛𝑛𝐵𝐵−1)𝜎𝜎𝐵𝐵2

𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵−2
  (2) 

For normally distributed populations, an effect size equal to one 
may be interpreted as a difference in group means equal to one 
standard deviation. The product of effect size and size of the 
studied population may be interpreted as a test of significance. 

Effect size of each combination of high condition relative 
to the low load low fatigue condition was calculated: high load-
low fatigue, low load-high fatigue, and high load-high fatigue. 

4. Results 
Results from Study 1 are presented in aggregate, for the 16 
subjects in the study. In Study 1, there were 216 valid trials from 
each subject, resulting in 54 trials per condition. Table 2 
summarizes the aggregate effect sizes for the four different 
speech features applied to the three experimental conditions, 
which are summarized in Figure 1. Load changes alone do not 
produce feature changes with significant effect sizes. For three 
of the features, fatigue and fatigue combined with load do 
produce significant changes (shown in bold font). These 
changes appear to be due to fatigue alone, based on the 
similarity of effect sizes for fatigue alone and for fatigue 
combined with load. The changes are an increase in the speech 
onset time, a decrease in the speaking rate, and an increase in 
the DMFCC first principal component (which corresponds to 

larger values in the low-rank eigenvalues).  
These changes are consistent with psychomotor retardation. 

For example, in previous work on the effects of depression on 
speech features, similar relations were found between 
depression severity and DMFCC eigenvalues and phoneme-
based speaking rate [6], [17]. These changes have been 
hypothesized to be due to psychomotor retardation, which is a 
prominent symptom of major depressive disorder. To our 
knowledge, speech onset time has not previously been utilized 
as an indicator of psychomotor retardation. 

 
Figure 1: Diagram of Cognitive Conditions. 

 

Table 2: Study 1 effect sizes 
Feature Condition Effect Size P-value 
Speech 
Onset Time 

Load -0.10 0.04 
Fatigue 0.34 0.00 
Load & Fat. 0.30 0.00 

Speaking 
Rate 

Load -0.08 0.09 
Fatigue -0.20 0.00 
Load & Fat. -0.20 0.00 

Voice 
Features 

Load 0.04 0.43 
Fatigue -0.03 0.51 
Load & Fat. 0.03 0.51 

DMFCC 
Corr. Struct. 

Load 0.01 0.82 
Fatigue 0.28 0.00 
Load & Fat. 0.28 0.00 
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In Figure 2, the distribution of effect sizes in the 16 subjects 
are plotted for the four speech features, with the aggregate 
effect size shown with a red bar. Notice that the effect size for 
many individual subjects has the opposite sign as the aggregate 
effect size. These distributions provide the appropriate context 
for studying the effect sizes found on an individual basis in 
Study 2.   

The results from Study 2 are presented on a per-subject 
basis, as a case study on individual variability. Subject 373 is 
not presented, as there were too few data points from which to 
calculate a meaningful effect size. In Study 2, the number of 
valid sessions per subject in each fatigue/load group are shown 
in Table 3 and the PVT reaction speeds (average reciprocal 
reaction time) are shown in Table 4 in both raw and normalized 
(zero-mean) forms. Note that large reaction speeds correspond 
to small reaction times and lower fatigue conditions. 

Figure 3 illustrates representative results from Study 2 on 
an aggregate and individual bases. The aggregate results from 
Study 1 are also provided for comparison. Study 2 differs from 
Study 1 in two important respects. First, a smaller number of 
sessions are used to compute individual and aggregate effect 
sizes. Second, in Study 1 the fatigue label is based the time 
period within the experiment in which the trial occurred, 
whereas in Study 2 the fatigue label is based on the PVT score. 
Speech onset time appears to be the most consistent feature 
across the two studies.       

Both studies show a range of individual effects, indicating 
that effective methods for cognitive performance estimation 
may require individualization, as similar levels of induced 

fatigue may affect speech patterns differently in different 
individuals.  

5. Conclusions 
This paper investigates independent and joint effects of 
cognitive load and fatigue conditions in voice features 
capturing timing, voice quality, and articulatory coordination. 
We find the fatigue effect is typically much larger than the load 
effect in all features, which has implications for the joint 
estimation task. More research is necessary to characterize a 
cognitive performance estimation technique taking individual 
variability into account.  
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