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Abstract
Recent work has shown that end-to-end (E2E) speech

recognition architectures such as Listen Attend and Spell (LAS)
can achieve state-of-the-art quality results in LVCSR tasks. One
benefit of this architecture is that it does not require a sepa-
rately trained pronunciation model, language model, and acous-
tic model. However, this property also introduces a drawback:
it is not possible to adjust language model contributions sep-
arately from the system as a whole. As a result, inclusion of
dynamic, contextual information (such as nearby restaurants or
upcoming events) into recognition requires a different approach
from what has been applied in conventional systems.

We introduce a technique to adapt the inference process
to take advantage of contextual signals by adjusting the out-
put likelihoods of the neural network at each step in the beam
search. We apply the proposed method to a LAS E2E model
and show its effectiveness in experiments on a voice search task
with both artificial and real contextual information. Given op-
timal context, our system reduces WER from 9.2% to 3.8%.
The results show that this technique is effective at incorporating
context into the prediction of an E2E system.
Index Terms: speech recognition, end-to-end, contextual
speech recognition, neural network

1. Introduction
A contextual automatic speech recognition (ASR) system uses
real-time contextual signals to dynamically adjust the priors in
a pre-trained speech recognition system [1]. Contextual sig-
nals can include: a user’s location, the device being used, or
personalization information such as a user’s favorite songs and
calendar events (Figure 1). Including this information has been
shown to improve recognition results [2]. Our contextual ASR
system was previously built on a conventional architecture, and
in this paper we propose a design to bring similar improvements
to E2E architectures.

Figure 1: Contextual ASR system and example contexts.

Conventional ASR systems break down the recognition
problem into subproblems which are independently modeled

and trained, then jointly executed during recognition. For ex-
ample, an acoustic model will associate raw acoustic features
to phonetic units such as context dependent phonemes, a pro-
nunciation model will map those acoustic units to words, and
a language model will assign likelihoods to word sequences.
Afterwards, a text normalization component may transform the
spoken form of the word sequence to a written form (e.g. one
pm vs. 1:00 PM or 13:00).

This relative independence of modules has the benefit of
adjustability. Conventional contextual systems rely on being
able to inspect and modify individual components of modular
systems in order to function. For example, a standalone lan-
guage model can support dynamic population of classes [3], and
a standalone pronunciation model allows dynamic injection of
pronunciations [4]. One drawback of this is that information
consumed within one piece of the modeling may be useful else-
where; acoustic signals could inform a language model or text
normalizer.

An E2E system refers to a system in which a single compo-
nent learns to associate raw acoustic data with written language
without the need for independently trained components. Within
the last few years, E2E (also known as sequence-to-sequence)
models implemented using neural networks have become com-
petetive with conventional systems [5]. Among these E2E mod-
els are connectionist temporal classification approaches such as
RNN-T [6] or attention-based approaches, such as Listen At-
tend Spell [7].

In this work we focus on bringing on-the-fly rescoring [8]
into the LAS implementation of an E2E system. We do not
have the same amount of adjustability in the E2E paradigm,
but the beam search portion of the system provides a place to
implement rescoring. The beam search maintains a set of par-
tial sequence hypotheses and decides which previous outputs to
feed back into the LAS decoder to continue generating outputs
[7]. Previous work has explored fusing a language model into
an E2E system (as in Cold Fusion and Deep Fusion [9]). Re-
cently, shallow fusion demonstrated using a swappable LM that
can be changed per task [10]. This work is related but differs in
that we do not fuse a complete LM into the system, instead we
adjust the network outputs with a partial LM containing only
contextual n-grams.

We created a system which takes contextual phrases for an
utterance along with an amount by which to increase their like-
lihoods. The phrases are split into n-grams and compiled into a
weighted finite state transducer (WFST), which allows fast and
efficient search [8]. During beam search the WFST is traversed
along with the outputs from the LAS network, and contextual
rescoring is performed when a match is found.

The rest of the paper is organized as follows. Section 2
provides background on contextual speech recognition. Section
3 gives an overview of the system designs. Section 4 describes
the implementation of LAS and contextual modeling in LAS.
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In section 5 we present our experimental results, and in 6 we
conclude.

2. Contextual Speech Recognition
There are many speech recognition applications where on-the-
fly adjustment is indispensable. In the voice search task, we
have previously shown quality improvements by introducing n-
gram weight adjustments for salient n-grams from personal con-
texts and geographic information [2] as well as improved recog-
nition of contact names using context [11]. Products such as the
Google Assistant use context for all types of personal entities
(e.g. songs, artists), among many other applications.

Powering this functionality is a context module, which is
responsible for fetching data from databases, the recognition
request, and other on-line services. All of these contextual
sources must respond quickly, as this process takes place as the
user begins speaking. Once the contexts are collected, the con-
text module transforms them into WFSTs which can be fed into
the recognition system. In the conventional system, these can
be used in several ways. In this paper we are concerned only
with on-the-fly rescoring.

2.1. On-the-fly Rescoring

In on-the-fly rescoring, we compile the contexts into a set of
n-grams, B, for which we wish to increase likelihood. These
n-grams are compiled into a WFST as described in [8].

During recognition, whenever a word boundary is reached
for a word w, the recognition component presents the score for
that word Sw along with its word history wH to a rescoring
function FR. This function returns a rescored score Rw, which
is used as the recognition proceeds.

Rw =

{
FR(Sw, w|wH) if w|wH ∈ B
Sw else

(1)

In previous work [2], we have used two approaches for FR. The
first is a log-linear interpolation between the contextual WFST
score Cw and base score Sw, using an interpolation weight α.

FR(Sw, w|wH) = (1− α)Sw + αCw(w|wH) (2)

The second is a likelihood “boost”, obtained by applying the
contextual WFST boost Cw to the hypothesis score in log-
space, moderated by a weight α.

FR(Sw, w|wH) = Sw − αCw(w|wH) (3)

3. System Design
3.1. Conventional ASR
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Figure 2: Conventional contextual ASR system.

In the conventional system, the decoder computes FR
whenever a word boundary is reached in the joint pronounci-
ation/language model graph (Figure 2). This implementation

acts upon thousands of competing paths during exploration of
the graph. In this implementation, on-the-fly rescoring has the
broad ability to affect the search of the graph [12].

In addition to on-the-fly rescoring, we are able to dynami-
cally modify the joint pronounciation/language model graph by
adding new paths at runtime. This allows us to insert dynamic
pronunciations or language model classes [3, 4]. We do not
yet have a direct replacement for this additional functionality in
LAS.

3.2. LAS Rescoring system
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Figure 3: LAS-based contextual ASR system.

The LAS system is rescored in a simpler fashion. The con-
text system still provides the WFSTs containing the n-grams of
contextual relevance, however in this case they are provided to
the beam search module (Figure 3). This module iteratively in-
teracts with the LAS neural network to build hypotheses one
unit at a time.

In this arragement, rescoring can only be applied on the sig-
nificantly smaller number of competing hypotheses maintained
in the search (typically 8).

4. Rescoring LAS with Context
4.1. The LAS Model

There are several attention-based E2E models that have been
studied recently [13]. Our experiments are conducted on the
LAS architecture [7], though we posit that the method should
be applicable to this whole family of models.

As the name suggests, LAS consists of three components
that are analogous to the three major parts of a conventional
speech system. First, given a sequence of d-dimensional feature
vectors x = (x1,x2, · · · ,xT ), where xt ∈ Rd, the encoder
produces a sequence of fixed-size feature representations, de-
noted henc

1 , · · · ,henc
T . Typically an encoder consists of a stack

of long short-term memory (LSTM) [14] layers. This “listen-
ing” component is akin to an acoustic model.

Next, at each decoding step u, the model “attends” to vari-
ous parts of the T feature representations to compose a context
vector cu, which is similar in function to dynamic time warp-
ing.

Finally, conditional on the context vector output by the at-
tention mechanism, as well as the previous output yu−1, the
decoder “spells”, meaning it outputs a probability distribution
P (yu|yu−1, cu) over output symbols. Output symbols can be
graphemes, phonemes, or wordpieces; in our experiments we
use graphemes.

Although the three components of the LAS model have sim-
ilar roles to the parts of a conventional speech system, a key
difference is that they are trained jointly as a single neural net-
work. Typically they are trained to minimize cross entropy be-
tween the output probability distribution and the ground truth
grapheme labels. The basic LAS model is shown in the dotted
line box in Figure 4.
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Figure 4: LAS model with on-the-fly rescoring.

4.2. Decoding LAS with Beam Search

At inference time, we must decode the model to generate a se-
quence of output labels. Ideally we would like to find the out-
put sequence with maximum likelihood according to the output
probability distribution, i.e.

y∗ = argmax
y

p(y|x) (4)

The model, however, gives only step-wise distributions
P (yu|yu−1, . . . , y0,x). Exhaustively computing the probabil-
ity of every possible output sequence would be intractable, so it
is common to approximate the arg max using a beam search.

Beam search is conducted as follows. At the first decoding
step, we feed a special start-of-sentence token 〈sos〉 to the de-
coder. The decoder then outputs a distribution P (y1|〈sos〉, c0)
over the G graphemes that comprise the output vocabulary. For
each of the top k most likely graphemes, we create a partial
transcript and add it to our beam. In the next decoding step,
we extend each of these k partial transcripts by each of the G
graphemes, for a total of kG candidates. Then we once again
retain only the k most likely partial transcripts from this set of
extensions. If the special end-of-sentence token 〈eos〉 is en-
countered, the transcript is considered complete and removed
from the beam. This repeats until there are no more partial tran-
scripts.

For attention-based end-to-end speech models, good results
can be achieved with a relatively small k, such as 8 or 16, with
little benefit for higher values [7].

4.3. Beam Search Adaptation

To incorporate context into the LAS model, we modify the ob-
jective of the beam search. Rather than optimizing the criterion
from Equation 4, we optimize the following:

y∗ = argmax
y

p(y|x)
pC(y)α

(5)

where pC is a prior distribution over output sequences based on
some context C and α is a tunable parameter controlling the
amount of influence of the context. In other words, we apply a
small boost in likelihood for output sequences which are more
likely given the context. This is similar to shallow fusion [10],
except that here we selectively apply a small boost instead of

including an LM score in all hypotheses. The following section
will explain more about how pC is generated.

In practice, this means that we modify the score used to
evaluate partial transcripts in the beam search. At every step of
the beam search, we consider the top k partial transcripts from
the previous step. We extend each transcript by each of the L
graphemes, then compute the score

s(y) = log p(y|x)− α log pC(y) (6)

for each of the kL candidates. Notice this is equation (3) ap-
plied to LAS. Then we once again retain only the k partial tran-
scripts with the highest scores. α can be tuned on a dev set to
minimize WER.

4.4. Encoding Context

In the previous section we assumed that we had access to a dis-
tribution pC . Now we turn to the question of how this is con-
structed and applied in practice.

As in conventional on-the-fly rescoring, the context n-
grams are first compiled into a WFST which we denote G.
This allows different n-grams to have different weights. Note
that n-grams are words, but the LAS model is decoded at the
grapheme level. Therefore, we next compose the word-level
WFST with a “speller” which spells the graphemes of each
word. Following the procedure used by [15] for a general lan-
guage model, we compose G with a speller FST S to produce
C = min(det(S ◦G)). C can then be accessed to output a log
probabilty of any prefix during the beam search. Importantly,
unlike [15] we do not perform weight pushing. This is because
we only want to apply score boosts at word boundaries.

5. Experiments
We ran two sets of experiments to evaluate the relative perfor-
mance of the contextual systems. In all of our tests, the data has
been anonymized and does not contain any personally identifi-
able information. In all of our experiments we show word error
rate (WER), and for some we provide the sentence accuracy
(SACC).

In the first set of experiments, we test the theoretical lower
limit of WER this system can achieve when it is provided op-
timal context. We used the n-grams from the exact transcript
of the utterance as context. We refer to this experiment as the
transcript truth experiment. Another variant of this experiment
provides varying numbers of distractors: n-grams which do not
appear in the transcipt and have nothing to do with it. When
tuning a contextual system for real-world use, it is important to
use rescoring weights which give good results when given good
context and yet do not deteriorate in quality when given bad
context.

The second set of experiments tests the system on a real
contextual task. We chose utterances belonging to a dialog
state which expects a very small number of possible tran-
scripts: “yes”, “no”, “cancel”, “send”. We refer to this as the
Yes/No/Cancel (YNC) test.

The baseline in our experiments is our production con-
ventional system. It uses an LSTM to transform acoustic
features into probability distributions over context-dependent
phonemes, which are then matched using a WFST-based de-
coder to word sequences. More details can be found in our pre-
vious work on contextual systems [2, 12, 1].

The architecture used for LAS in all experiments is as fol-
lows [5]. The encoder consists of five layers of 1400 unidirec-
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tional LSTM cells. The attention mechanism is a multi-headed
additive attention [16] using 4 heads, with a 1,024 dimensional
query vector. The decoder consists of 2 layers of 1,024 RNN
cells. In the beam search we use a beam size of 8.

The network is trained to output graphemes. This includes
all lowercase letters, the numbers 0-9, a space symbol, punctu-
ation and syntactic characters (e.g. ‘.’, ‘&’, ‘%’, ‘?’). The net-
work outputs a special end-of-sentence token when it believes
it has reached the end (“〈eos〉”).

All experiments use the same acoustic features. The en-
coder is provided with 80-dimensional log-mel acoustic fea-
tures. These are computed over a 25ms window with a frame
shift of 10ms. As discussed in [13], three consecutive frames
are stacked and every third stack is given to the encoder.

5.1. Transcript Truth Experiments

The test set used for this experiment consists of 1,000 utterances
selected from voice search traffic. When distractors are present,
we used randomly selected transcripts from other utterances in
the test set.

Case WER [%] SACC [%]
Baseline 9.6 76.32

Baseline biased 4.4 89.19
LAS 9.2 73.30

LAS biased 3.8 90.40
Table 1: WER and SACC observed on the transcipt truth test
set for the baseline and the LAS system, both with and without
rescoring. No distractors are present.

This table gives the best results we achieved in the no-
distractor case for both systems. The baseline improves from
9.6% WER and 76.32% SACC to 4.4% WER and 89.19%
SACC with rescoring. The LAS system improves from 9.2%
WER and 73.3% SACC to 3.8% and 90.4% with rescoring.

In figure 5, we show how the system performs when pro-
vided distracting context. Each line corresponds to a particu-
lar configuration of rescoring parameters. The key shows what
WER that configuration achieves when provided the transcript
truth.

Figure 5: Performance comparison for various configurations
in LAS and conventional contextual systems.

As expected, biasing the transcipt truth highly tends to de-
crease the WER quickly as the number of distractors increases.
The most aggressive tune of LAS, which achieves a WER of
3.77 with transcript truth, decreases the WER to 16.7 with 1,000

distracting transcripts. However, with slightly less strong tun-
ing the LAS system outperforms the conventional system at all
points.

5.2. YNC Experiments

The test set used for this experiment consists of 976 real utter-
ances where the speaker’s device was in a YNC dialog state.
The context provided to the rescorer is only the set of unigrams
“yes”, “no”, “cancel”, and “send”. While nearly every utterance
in the set contains one of these words, many of them contain a
variant such as “send now” or “cancel cancel”. These are very
difficult-to-recognize utterances with significant noise and mul-
tiple speakers.

One challange that arose during this experiment is that the
model we use is trained only on utterances consisting of more
than three words. Therefore, the model has difficulty correctly
terminating the short transcripts found in this dataset. This is
a problem that affects the LAS system more than a conven-
tional system because the LAS system learns its inherent LM
from the training utterances, whereas a conventional system can
learn its LM from any available data. To address this issue, we
introduced a word insertion penalty (WIP) which adds a linear
penalty to the transcript score based on length.

The following table shows that the WER for the LAS sys-
tem is initially very high due to the difficulty of this test set.
Our rescoring method reduced WER by 23% relative. While
the WIP did little to impact the LAS system alone, it was crit-
ical to achieving results with rescoring. Even though the LAS
model does worse than the baseline system, rescoring achieved
a better relative WER improvement.

Case WER [%] SACC [%]
Baseline 12.0 90.1

Baseline + rescore 9.7 92.5
LAS 20.9 84.0

LAS + WIP 20.5 84.1
LAS + WIP + bias 15.7 86.1

Table 2: WER and SACC observed on the YNC test set for new
LAS system, both with and without rescoring. No distractors
are present.

6. Conclusion
We have described a technique to build a contextual speech
recognition system using E2E ASR systems. We have shown
that the existing work in contextual modeling can be applied
very similarly in this new paradigm. The experiments show that
the technique works very well and is suitable for use in the next
generation of multi-modal speech recognizers; it achieves even
better results than the previous system on tests designed to mea-
sure the ability to adapt to context and robustness to bad context.

In the future, we plan to introduce other contextual adap-
tation techniques from conventional speech recognizers to E2E
models. We also plan to use this work in similar families of
models, such as RNN-T.
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