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Abstract
Common text-to-speech (TTS) systems rely on training data
for modelling human speech. The quality of this data can
range from professional voice actors recording hand-curated
sentences in high-quality studio conditions, to found voice data
representing arbitrary domains. For years, the unit selection
technology dominant in the field required many hours of data
that was expensive and time-consuming to collect. With the ad-
vancement of statistical methods of waveform generation, there
have been experiments with more noisy and often much larger
datasets, testing the inherent flexibility of such systems. In this
paper we examine the relationship between training data and
speech synthesis quality. We then hypothesise that statistical
text-to-speech benefits from high acoustic quality corpora with
high level of prosodic variation, but that beyond the first few
hours of training data we do not observe quality gains. We then
describe how we engineered a training dataset containing opti-
mized distribution of features, and how these features were de-
fined. Lastly, we present results from a series of evaluation tests.
These confirm our hypothesis and show how a carefully engi-
neered training corpus of a smaller size yields the same speech
quality as much larger datasets, particularly for voices that use
WaveNet.

1. Introduction
Text-to-speech typically requires a corpus of human voice data
as the initial input. For concatenative systems, this corpus is
analysed, and at runtime, units deemed optimal are selected to
form new utterances. For statistical systems, acoustic models
are trained on the corpus. At runtime, the models are used to
synthesise new utterances. For both approaches, the runtime
speech quality is heavily dependent on the quality of the ini-
tial corpus. For concatenative systems, [1], a large, high quality
corpus allows for better join and target cost matching. For sta-
tistical systems, the cleaner the data, the higher the quality of
observations and thus of the synthesized speech. Therefore, the
main difficulty in creating new text-to-speech voices is in col-
lecting new speech data.

There have been numerous attempts at solving this data bot-
tleneck. Text-to-speech voices have been successfully trained
on crowdsourced speech data [2], on filtered acoustic data for
training speech recognition systems [3], or commercial audio-
books [4]. New voices have also been created using voice adap-
tation techniques [5] or voice morphing [6]. All of these ap-
proaches aim to bypass the data sparsity problem and offer an
inexpensive way of building new text-to-speech voices.

Our goal was to examine and compare how training datasets
of different quality and composition compare when used with
the same engine. In effect, it would be the reverse of The Bliz-
zard Challenge [7] [8], a well-established annual experiment
where different speech synthesis systems compare their qual-

ity when trained on the same corpus. We start by comparing
the resulting speech quality for voices trained on high-quality
multispeaker data and lower-quality multi-speaker datasets. We
then evaluate the performance of voices trained on various sub-
sets of single-speaker high-quality corpus. We design and engi-
neer this corpus to make it balanced with respect to a larger set
of features and more relevant to modern TTS usage scenarios.
Lastly, we compare the performance of this corpus with corpora
of varying sizes developed using other methods.

2. Comparing crowdsourced and
high-quality speech corpora

Crowdsourcing has recently been a popular method of collect-
ing speech data that could be used for text-to-speech. The
method is particularly useful for low-resourced languages,
where high-quality speech corpora are difficult to find or build
[9]. It is also an attractive solution for developing new voices
when we do not want to invest in professional recording studios
or voice talents. It is presumed that single speaker high quality
speech corpus will yield superior synthesis quality to a multi-
speaker crowdsourced corpus. However, we wanted to conduct
an experiment that would quantify the quality difference, which
would allow developers to make a more informed decision when
selecting their data colletion method.

2.1. Methodology

As a basis for this experiment, we used an existing Google cor-
pus of speech crowdsourced from multiple ordinary speakers of
Afrikaans. The corpus contained 2926 sentences (28957 words)
recorded in carefully arranged quiet conditions by 10 speak-
ers of the same gender. We then built a second corpus using
the same 2926 sentences but recorded in professional studio
conditions with a single professional voice actor. The studio
recordings took 4 days. We did not put any effort into chos-
ing a particular voice actor aside from a quick technical assess-
ment of their voice in studio conditions to ensure it was suitable
for TTS recordings. From these corpora, we built two voices
using Googles LSTM speech synthesis system [10]. We did
not modify any data inputs other than the audio. For exam-
ple, the content of the sentences, the pronunciation lexicon, and
any text normalization remained identical for both builds. With
each voice, we synthesised a test set of 250 sentences. We then
conducted an A/B comparison test and a Mean Opinion Score
listening test.

2.2. Results

Table 1 below presents the results of the A/B listening test be-
tween voices built on a crowdsourced dataset (System A) and a
high-quality studio-recorded dataset (System B).

Table 2 below presents the respective Mean Opinion
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Table 1: AB preference test results for crowdsourced (System A)
and high-quality (System B) voices.

System A Neutral System B

1.6% 16.9% 81.5%

Scores:

Table 2: MOS scores for voices trained on crowdsourced (Sys-
tem A) and high-quality (System B) datasets

System A System B

2.497 3.610

The AB test results unsurprisingly show a strong preference
for the voice trained on the single-speaker high-quality corpus.
The MOS listening test establishes the precise delta between the
scores, with System B scoring 1.14 higher than System A. The
score for the voice trained on high-quality corpus also remains
relatively high considering the overall size of this dataset (fewer
than 3,000 utterances, or just over 2 hours of speech), and the
lack of a principled approach to selecting the text for recording.

3. Designing the optimal corpus for
statistical text-to-speech

Our next experiment attempted to design a training corpus
for text-to-speech that would maximize synthesis quality while
maintaining a balanced dataset size. We use a new sentence
selection method employing a new set of features to build the
initial text corpus. We then perform a series of listening tests
using different subsets of this corpus as training data for text-
to-speech voices.

3.1. Building the candidate corpus

Typically, when building a text-to-speech corpus, phonological
features are used to assess whether the corpus is balanced. For
example, the canonical Arctic database [11] ensures that every
phoneme pair (diphone) combination possible in English exists
in the corpus. Moreso, it ensures that the frequency distribution
of specific diphones in the corpus approximates their frequency
distribution in natural language. However, modern commercial
speech synthesis systems use datasets much larger than Arctic,
often containing 40,000 sentences or more [12][13]. In those,
simple phonological types like diphones or even triphones are
represented adequately. But as the datasets are growing expo-
nentially in size, the quality gains do not follow at the same
pace. To build our optimal training corpus, we first conducted
a detailed analysis of TTS usage, classifying the requests into
one of over 20 domain types (for example, actions, dialog, en-
tertainment, navigation). We then composed and annotated a
huge candidate text corpus of over a million sentences that had
a similar frequency distribution of these domain types as real
TTS usage. This candidate corpus served as input to Skripto,
our sentence selection algorithm, which automatically selected
specific sentences that would form the recording script.

3.2. Sentence selection algorithm

Sentence selection and the economy of training datasets for
text-to-speech has been approached by a number of authors [14]

[15] [16] [17].
Our legacy sentence selection algorithm filled an initial

script with the first sentences of the candidate corpus. It then
iteratively went through each remaining sentence of the candi-
date corpus and replaced the lowest scoring sentence from the
script with the current sentence of the candidate corpus, if bet-
ter. The legacy optimization goal was to match the target distri-
bution curves of various phonological features such as: word
identifiers, stressed diphones, sonorants, sentence-final sylla-
bles. The target distribution curves followed a power law based
on the candidate corpus distributions, but it moved some of the
mass from the head into the tail for a more balanced resulting
script. An internal review of this legacy algorithm suggested it
is similar to selecting sentences at random from the candidate
corpus and, as we will show in section 3.5.2, it is outperformed
by the submodular algorithm we describe next.

In this paper, we propose a novel way of selecting a record-
ing script using submodular maximisation [18]. Described in
the submodularity framework, the problem becomes a bipartite
graph where on the left side we have sentence nodes and on the
right side we have nodes representing features of the sentences;
edges weigh how much a sentence values the connected feature
node [19]. This graph represents our corpus. Given a corpus
graph we run the lazy greedy algorithm (with Knapsack con-
straints) [20] to efficiently find a near-optimal recording script
that covers the feature nodes of the original corpus as well as
possible.

3.2.1. Features

Previous attempts at solving sentence selection through sub-
modular optimization focused on using simple objective func-
tions: usually using phoneme-only or triphone-only objective
functions and only for speech recognition [21] [22] [23].

For defining our objective function, we use the following
features, composed of multiple linguistic properties:

V/C + stress Vowels/Consonants with stress. Whether a sound
is a vowel or a consonant together with its stress (e.g.
unstressed = 0, primary stress = 1). The consonants take
their stress from the vowel of the syllable.
Examples: c0, c1, v0, v1.

Phonemes A line’s individual phonemes.
Examples: k, a, t.

Triphones List of three consecutive phonemes.
Examples: sil-k-a, k-a-t, a-t-sil.

Word identifiers A line’s word identifiers.
Examples: I, read past, a, book.

Trigrams Three concatenated word identifiers.
Examples: sil-this-is, this-is-a, is-a-cat, a-cat-sil.

Prosodic types Set of prosodic intonation types for the line.
Examples: WH QUESTION, COMMAND.

In Table 3, we provide a description of how each feature is
used as part of our objective function.

3.2.2. Objective function

Given a feature, we define its feature set F as all the distinct
values (items) it can take. For example, the phonemes feature
set (for English) is the set of all 44 English phonemes.

We define F (l) as the set of items from feature set F
present in line l, where l is a line from a corpus C.
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Table 3: Features of the objective functions. Each feature item
is scored up to “max items” (countmax(F ) in (5)), a feature is
penalized for long sentences if “Penalize” is Yes and a feature
ignores <sil> tokens if “Ignore <sil>” is Yes.

Name Max items Penalize Ignore <sil>

V/C + stress 3000 No N/A
Phonemes 500 No Yes
Triphones 1 No No
Word identifiers 1 Yes Yes
Trigrams 5 Yes No
Prosodic types 100 No N/A

We then define the counts of a line l with regards to feature
set F as follows:

counts(l | F ) := {(itemi, counti)} (1)

where itemi ∈ F (l) and counti represents how many times
itemi appears in line l. Note that it is straightforward to extend
F and counts to a set of lines S.

We define the discrete derivative of a set function f : 2C →
R with respect to l [19]:

∆f (l | S) := f(S ∪ {l})− f(S), ∀S ⊆ C and ∀l ∈ C (2)

where C represents a set of lines (the corpus) and 2C represents
the power set of C. Intuitively, the discrete derivative measures
how much value line l would add to the current script S.

Finally, instead of defining our objective function explicitly,
we construct the following discretive derivative for our objec-
tive function:

∆f (l | S) :=
∑

F∈features
1

countl,F
∆F (l | S),

∀S ⊆ C and ∀l ∈ C
(3)

where:
countl,F =

∑

itemi∈F (l)

countl,itemi (4)

∆F (l | S) :=

{
0, countS,itemi >= countmax(F )∑

itemi∈F (l) ∆itemi(l | S), otherwise
(5)

∆itemi(l | S) :=
countl,itemi

countl,itemi + countS,itemi

(6)

countl,itemi = counti, (itemi, counti) ∈ counts(l | F )
(7)

Similarly, for countS,itemi replace l with S in (7).
It is easy to show that the underlying (unknown) objective

function f is monotonically non-decreasing and submodular be-
cause its discrete derivative ∆f is always non-negative and has
diminishing returns (the value of a line l decreases as the script
S increases).

3.2.3. Lazy greedy algorithm

In order to maximize our (monotone) submodular objective
function with Knapsack constraint on the number of words
(budget):

max
S

f(S)s.t.
∑

l∈S
cw(l) ≤ Bw (8)

where cw(l) represents the ”word count” of line l (i.e.
countl,words in (4)) and Bw represents the ”word budget”, we

adapt the lazy greedy algorithm with Knapsack constraints [20]
[19] (as we already normalize the discrete derivative in (3)):

Suc
i = Suc

i−1 ∪
{

arg max
l∈C\Suc

i−1

cw(l)∆(l | Suc
i−1)

}
(9)

Scb
i = Scb

i−1 ∪



 arg max

l∈C\Scb
i−1;cw(Si)+cw(l)≤Bw

∆(l | Scb
i−1)




(10)

Sf = arg max
S∈{Suc,Scb}

f(S) (11)

where Suc is the uniform-cost solution, Scb is the cost-benefit
solution and Sf is the final recording script.

3.3. Acoustic data collection

The text corpus selected by Skripto was used to collect speech
data. Given the quality advantage of high-quality acoustic data
we describe in section 2, the corpus was recorded by a single
voice talent in carefully controlled studio conditions. Througout
the sessions, we maintained a signal-to-noise ratio of around
50dB and reverberation time below 40 ms. To control for in-
dividual speaker effects, we recorded two corpora: one with a
female and one with a male voice actor. We wanted to depart
from the highly unnatural and controlled delivery typical of ear-
lier generation corpora used for unit selection. We instructed
the voice actor to avoid hyperarticultion and to read naturally,
using conversational or expressive style as needed. We did not
attempt to control the consistency of the recordings, but instead
encouraged wide prosodic variation in the reading style of the
actor. The actor was allowed to read without interruptions, fur-
ther contributing to the naturalness of the recordings.

3.4. Dataset size

We created a modular corpus of 100,000 words (90,860 sen-
tences) selected by the Skripto sentence selection algorithm de-
scribed in section 3.2. Each 20,000-word subpart of the corpus
was balanced with respect to the coverage types used for sen-
tence analysis. We then built five voices for each of the two
speakers using 20%, 40%, 60%, 80% and 100% of the initial
100,000-word corpus.

3.5. Evaluation

A total of 10 voices were evaluated by means of subjective lis-
tening tests collecting Mean Opinion Scores (MOS) for each
voice. We used the same set of sentences for all evaluations.
The test set contained 1000 sentences and covered a variety of
domains requiring a range of prosodic styles: conversational di-
alog, news sentences, questions, driving directions, device nav-
igation commands, among others. The raters listened to speech
samples in quiet conditions using headphones.

3.5.1. MOS Results

Table 4 below presents MOS results for voices trained on
balanced, fractional datasets at 20,000-word intervals using
Google’s LSTM-based speech synthesis system. Voice 1 is the
male voice, Voice 2 is the female voice.

We can observe that the male voice scores generally higher
than the female voice. We also observe that even the voices
with the smallest training dataset achieve good results, and that
a five-fold increase in the training data yields only about 0.5
increase in the MOS.
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Table 4: MOS scores for voices built with fractional datasets

Corpus size in words Voice 1 Voice 2

20, 000 3.57 3.28
40, 000 3.69 3.52
60, 000 3.72 3.56
80, 000 3.78 3.63

100, 000 3.83 3.71

3.5.2. Comparison with other corpora

Table 5 below presents MOS results for voices trained on vari-
ous legacy American English corpora. These datasets are single
speaker corpora recorded by professional voice actors, but de-
veloped without the sentence selection algorithm presented in
this paper. We quote the corpus size in hours and the MOS
achieved by the voices on the same test set. We compare it to
a fractional corpus from our experiments described in section
3.5.1 that is closest to the legacy corpus in either size or the
MOS result it yields.

Table 5: Quality comparison between random and carefully de-
signed corpora

Corpus size in hours
and minutes

MOS
score

Reference fractional
build

65h 37min 3.92 100% | 3.83 MOS
23h 5min 3.83 100% | 3.83 MOS
4h 50min 3.34 40% | 3.69 MOS
11h 25min 3.41 100% | 3.83 MOS
9h 47min 3.59 100% | 3.83 MOS
10h 21min 3.69 20% | 3.57 MOS
9h 12min 3.32 100% | 3.83 MOS
4h 29min 3.29 40% | 3.69 MOS

We see how a 10-hour dataset developed with our method
yields similar synthesis quality as datasets 13 hours larger in
size, and only slightly lower than a 65-hour dataset. We also see
that corpora of similar size yield MOS results betweem 0.3 and
0.7 higher when using our corpus development methodology.
In the range of scores quoted here, this distance represents a
significant quality difference for the user. We also note that we
were able to achieve the same MOS result as a voice trained on
a 10-hour legacy corpus using only a fifth of the training data.

3.5.3. Quality with WaveNet

We wanted to investigate whether the quality gains from the
proposed corpus design would also apply to voices built us-
ing WaveNet [24]. We selected one of the fractional builds
for this evaluation, the male voice built with the 80% subset
of the corpus (80,000 words or about 7 hours of speech). We
then conducted another MOS listening test and compared it
with a number of MOS results achieved by WaveNet-backed
voices trained on legacy corpora. The legacy corpora are single-
speaker databases recorded in studio conditions by carefully
vetted professional voice talents, but did not utilize the sentence
selection methodology described in section 3.2. Table 6 below
shows a comarison of MOS results between WaveNet voices
trained on a variety of corpora:

We observe how with only 7 hours of speech data we

Table 6: MOS result for WaveNet voices and the corresponding
corpus sizes

Training corpus MOS

65hours/legacy 4.21
23hours/legacy 4.16
7hours/Skripto 4.18

achieved similar quality on subjective listening tests as with cor-
pora multiple times larger.

3.6. Discussion

In the results presented above we see how with a more prin-
cipled recording script design we are able to train voices on
much smaller datasets while maintaining similar synthesis qual-
ity. While we observe quality increase when comparing datasets
of small or medium size, the results are most pronounced when
compared with really large datasets of over 20, or even 65 hours
of speech. We attribute these results to a wider variety of textual
material included in our corpus. We achieved this by utilizing
a relatively wide set of domain tags that correlate with prosodic
styles, and a more complex method of scoring linguistic fea-
tures represented by candidate script sentences. In addition, the
selected sentenced were recorded in a highly natural, expres-
sive and, when appropriate, conversational style. This, we be-
lieve, allowed us to introduce a greater level of variation into
the training data. Unlike with unit selection systems, it appears
that statistical speech synthesis benefits from this variation in
the data, even if observations characterized by a particular set
of feature values are only seen a few times in the training set. It
is also interesting to note how training on progressively larger
datasets did not necessarily yield proportionally better synthe-
sis results. The quality gains were most pronounced with the
initial increase from 20,000 to 40,000 recorded words. We also
observe how training on very large but random datasets of up
to 65 hours does not benefit the quality as compared to smaller
but carefully designed datasets. This suggests that developing a
smaller corpus using our methodology, depending on resources,
between 4 and 10 hours of speech, is a more efficient way of
building text-to-speech voices that balances the data effort with
synthesis quality.

4. Conclusions
We have presented results from listening tests which we con-
ducted to evaluate speech synthesis quality of voices trained
on a number of different corpora. Our experiments examined
the relationship between the size and the quality of training
datasets, and the resulting text-to-speech quality. We have com-
pared voice quality achieved on multi-speaker crowdsourced
training datasets, as well as on single-speaker datasets recorded
in professional studio conditions. We have also presented a
principled method of building speech corpora that we have
shown yields superior text-to-speech quality for voices trained
using both LSTM and WaveNet backends. Lastly, for WaveNet
voices, we have shown how our method allows to achieve sim-
ilar Mean Opinion Score results while using only a fraction of
the data compared to corpora structured using other methods.
Together, our findings suggest the most optimal data collection
methods for rapid development of high-quality text-to-speech
voices.
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