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Abstract 

Thirty-four (34) children with reported speech sound disorders 

(SSD) were recruited for a prior study, as well as 31 of their 

siblings, many of whom also showed SSD. Using data-

clustering techniques, we assigned each child to one or more 

endophenotypes defined by the number and type of speech 

errors made on the GFTA-2. The genetic samples of 53 of the 

participants underwent whole exome sequencing. Variant 

alleles were detected, filtered, and annotated from the 

sequences, and the data were filtered using quality checks, 

annotations, and phenotypes. We then used Random Forest 

classification to search for associations between variants and 

endophenotypes.  In this preliminary report, we highlight one 

promising association with a common variant of COMT, a 
dopamine metabolizer in the brain. 

Index Terms: speech acquisition, speech delay, speech sound 

disorder, endophenotypes, whole exome sequencing, random 
forest, catechol-O-methyltransferase, COMT 

1. Introduction 

Speech sound disorder (SSD) is characterized by a difficulty 

with producing the sounds of one’s native language in 

comparison to one’s age-matched peers [1-3]. SSD in young 

children is a very common problem, at rates estimated 

between 4% and 16% depending on age [1, 3-6]. There are 

high rates of co-occurring problems with language, reading, 

learning, and social interactions, so intervention is needed for 

most [7, 8]. While most cases are resolved within a few years, 

others persist, and some may be early markers of more serious 

or specific syndromes such as dyslexia or specific language 
impairment [6, 9].  

Twin and family studies have indicated that SSD has a 

strong genetic component (see [1] for review), but to date few 

studies have examined the genetic basis of SSD in particular, 

as opposed to related language conditions like dyslexia and 

childhood apraxia of speech (CAS) [2, 10], particularly using 

next-generation sequencing data. A common strategy of SSD 

studies has been to target genes and loci previously linked to 

other language disorders [2]. As an example, studies linking 

neurochemical signaling genes to vocabulary and grammar 

skills [11, 12], language impairment, and reading disorders 

[13] led to other studies of these genes in relation to SSD [14, 

15]. They found associations with several genes, particularly 

DRD2, which encodes a dopamine receptor. 

Technological advances in next-generation sequencing 

have made whole exome sequencing (WES) of large numbers 

of study participants feasible and affordable only recently. For 

example, [16] purports to be the first WES study of CAS. One 

problem is determining how to locate promising genes out of 

hundreds of thousands of alternatives provided by WES. 

Machine learning techniques such as Random Forests [17] are 

often used for genetic data [18], but it is still necessary to pre-
filter the data, which may exclude genes of interest. 

The approach taken in this study attempts to alleviate that 

problem through the use of multiple, distinct measures of 

affectedness. We first examine the distinct patterns of 

behaviors in our study populations and use them to define 

subpopulations, based on the distinct phonemes that they show 

difficulty with. We then use random forests on WES data to 

look for associations of genes with each subpopulation. The 

pre-filtering of variants is tuned to the particular measure, 

allowing multiple chances to find an associated variant. This 

also makes it unnecessary to adopt a single arbitrary definition 

for what is believed to be a heterogeneous disorder [1]. 

The underlying hypothesis is that distinct genotypes may 

underlie distinct manifestations of SSD associated with 

different phonetic classes. This is similar to the common 

concept of an endophenotype [19, 20], an objectively defined, 

measurable behavior used as a proxy for one or multiple 

cognitive phenotypes. Endophenotype measures are often used 

in speech studies, such as nonword repetition [21], 

phonological awareness tests [15], and the test used in our 

study, the Goldman-Fristoe Test of Articulation ([22], used in 

e.g. [1, 15]). Here we extend the concept a bit to the use of 
phonetic classes as distinct measures.   

2. Data 

This is a retrospective study, using data and genetic samples 

collected in a prior grant and reported previously (e.g., [23, 
24]). 

2.1. Participants 

Sibling pairs (and one triplet) from 34 families were recruited 

for the original study, with the principal requirement being 

that at least one sibling must have been diagnosed with SSD. 

Four participants were later dropped due to unusable audio 

recordings, bringing the total to 65. Participant ages ranged 
from 5;1 to 10;1. 

Saliva samples were taken from each participant for the 

purpose of DNA sequencing. The samples were stored at a 
temperature of about -80° until the time of sequencing. 

2.2. Procedure 

The second edition of the Goldman-Fristoe Test of 

Articulation (GFTA) is described as “a systematic means of 

assessing an individual’s articulation of the consonant sounds 

of Standard American English” [22, pg. 1]. The Sound-in-

Words portion of the GFTA involves the elicitation of 53 

common words, out of which 77 target sounds (single 

consonants or clusters) are scored as correct or incorrect.  
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Although it was not developed as a measure of SSD in 

particular, the test produces a Standard Score that is 

normalized per the child’s age and gender. This score can thus 
serve as a useful initial estimate of the child’s degree of SSD. 

An experienced speech-language pathologist administered 

the GFTA to each participant, whose responses were recorded. 

The target sounds were each scored independently by two 

judges, who subsequently discussed the sounds they disagreed 

on until consensus was reached. The Raw Scores (total errors) 

were converted to Standard Scores and to percentile ranks (the 

percent of peers who made more errors) using the conversion 
tables published with the test, indexed by age and gender. 

3. Analysis 

3.1. DNA sequencing, annotation and filtration 

For the present study, which began more than 10 years after 

the saliva samples were collected, we began by running 

concentration and quality checks on the samples. We 

determined that the samples of 53 of the participants were of 

sufficient concentration and quality for WES. DNA was 

extracted and exons were captured using Whole Exome 

Agilent SureSelect XT V5.  Libraries were sequenced via 

Illumina HiSeq by Children’s Hospital of Philadelphia.  Fastq 

files are analyzed by fastqc, and further processed following 

GATK’s Best Practices (bwa, picard, samtools[25-27]). 

 Variant mutations were detected with Haplotyper [28], and 

annotated via ClinEff. After filtering for quality, this 

procedure produced a final list of 163,655 variants with 

associated genotypes.  

3.2. Clustering of target sound error data 

The scores of all 65 participants on the 77 GFTA-2 target 

sounds were used as the basis for defining phonetic 

endophenotypes as follows. The 65-by-77 matrix of error 

judgments (coded as “0” for correct and “1” for incorrect) was 

used to calculate a distance between each pair of target 

sounds, using an asymmetric binary distance metric. These 

distances were then used to cluster the GFTA targets and 
visualize the relationships among the common error types. 

Figure 1 is one visualization of the distances, as computed 

by t-SNE [29]. As evident in the figure, the errors tend to 

cluster around particular phonemes and manner classes. In 

contrast, what we do not see much is clustering based on 

voicing, place of articulation, or position within the word, for 
example. 

In particular, five groups of sounds stand out in Figure 1 

(circled): 1) rhotic /r/ sounds (in both singletons and consonant 

clusters), 2) lateral /l/ sounds (particularly in clusters, but the 

singleton tokens are also plotted nearby), 3) alveolar fricatives 

/s, z/ (including clusters), 4) the interdental fricatives /θ, ð/, 

and 5) a larger cluster in the middle consisting of the 

remaining fricatives /ʃ, v/ as well as the affricates /ʧ, ʤ/. This 

last cluster is admittedly more diffuse and less homogenous, 

but clearly forms its own cluster, distinct from the other two 

groups of fricatives, as was confirmed by follow-up analyses 
involving only the set of fricatives and affricates. 

A sixth cluster, consisting of only nasal sounds, is also 

visible in Figure 1, but this cluster is based on the errors of a 

single participant, the only one who had multiple nasal errors. 

Similarly, the participants had very few errors on singleton 

stop sounds, and so these sounds form several small clusters 

based on the idiosyncratic patterns of the few individuals who 

made those errors, rather than a single large cluster. 

 

 

Figure 1: Two-dimensional t-SNE visualization of 

relative error distances among GFTA targets (slightly 

adjusted to remove overlap). The particular target 

sound (or cluster) in each word is indicated by capital 

letters in conventional English spelling.  

3.3. Endophenotype class definitions and memberships 

Based on these phonetic clusters, we defined five 

endophenotypes and classified each of the 53 participants 

whose DNA was sequenced as either having each phenotype 

or not. A participant was classified as having the phenotype if 

either (1) the number of errors of that type reached a 

threshold, or (2) a threshold fraction of all errors were of that 

type. This latter condition was added so as to include older 

participants who made relatively few errors but were still 

considered affected. The particular thresholds for inclusion 

differed among endophenotypes, and were determined by 
modeling the errors as bimodal distributions. 

Table 1: Number of DNA-sequenced participants in 

each class, based on errors on particular phones 

(listed) or on overall score. 

Class Name Segments # (out of 53) 

Rhotic /r/ 25 

Lateral /l/ 12 

Alveolar /s, z/ 26 

Interdental /θ, ð/ 19 

OtherFric /f, v, ʃ, ʧ, ʤ/ 10 

Overall all 32 

 

The definitions and number of members of each 

endophenotype are summarized in Table 1. Note that the 

memberships are not mutually exclusive. In addition, we 

defined an Overall class, based on total GFTA scores. 

Participants were classified as members of this class if their 
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Standard Score was lower than 85 (one standard deviation) or 
lower than the 10

th
 percentile for their age and gender. 

3.4. Random Forests 

Having assigned the participants into various classes, the next 

step is to find sets of genetic variants that are successful in 

predicting class memberships. To do this, we used the method 

of Random Forests (RF) [17]. This is a supervised 

classification technique that consists of thousands of 

classification trees, each trained on random subsamples of 

training cases and features. A test case is classified as the 

majority classification among all trees. One crucial 

characteristic of Random Forests is that it can also calculate 

the “importance” of each feature to the success of the overall 

forest. This is calculated as the mean decrease in accuracy 

(MDA) of the forest when the input values of the feature are 
randomly permuted. 

We built separate RF classifiers to predict the 

memberships of each of the classes in Table 1, using the 

variant genotypes as the predictive features. To select the 

input features for each forest, we first removed all variants for 

which any participant’s genotype was undetermined, leaving 

104,214 variants. Next, we calculated the accuracy with which 

each variant alone could be used to predict each class.  Finally, 

a threshold accuracy was determined for each class, and the 

set of features that reached the threshold was selected. The 

threshold was set so that the number of features selected was 
as close to 1000 as possible (between 500 and 2000). 

The RF classifier for each class was then grown on all 53 

participants with 50,000 trees using the selected variants. 

Since class memberships were imbalanced to various degrees, 

we restricted the random sampling process to select 50% of 

samples from each of the two subclasses (members and non-

members) [30]. The number of features tested per split was set 

to the square root of the total feature number.  The MDA of 

each feature was calculated from each forest, producing for 

each class an ordered list of the most “important” features for 

classification. We then investigated the variants at the top of 

each list for their biological importance and possible relevance 
to speech development. 

4. Results 

Because the selection of genetic variants for study did not 

exclude any on the basis of biological function, the majority of 

the most “important” variants on the lists were ones that 

coincidentally co-segregate with the class of interest, but 

appear to be biologically irrelevant. In most cases, the variants 

were in genes whose product proteins had no apparent 

connection to speech development. In other cases, the 

variations were synonymous (encoding the same amino acid) 

or found in introns, the noncoding parts of genes which have 
uncertain biological function. 

Table 2 lists some of the more promising variants found 

for each endophenotype class. These were selected because 

their containing genes have previously been linked to nervous 

system development, or neurological conditions like bipolar 
disorder, though the connection to speech may be tenuous. 

One variant on the lists is particularly promising. The 

variant with the largest MDA for the classification of the 

“OtherFric” endophenotype was rs4680, a missense variant in 

a gene on chromosome 22q11 that encodes a protein called 

catechol-O-methyltransferase (COMT), which metabolizes 

catecholamine neurotransmitters in the brain such as 

dopamine, epinephrine, and norepinephrine. The variant 

rs4680 alternation changes an amino acid from valine (Val) to 

methionine (Met), causing up to a 4-fold difference in activity 

level [31]. Dozens of papers have been published investigating 

associations of this polymorphism with various conditions 

[32]. Numerous studies have linked the Met allele to 

psychiatric disorders such as OCD, panic disorder, and major 

depression [33-35]. On the other hand, many papers link the 

Val allele to lower levels of performance on various kinds of 

cognitive tasks [36-38].  

4.1. Post-hoc investigation of COMT 

Table 3 shows how the COMT polymorphism segregates with 

the “OtherFric” endophenotype. If one classifies ValVal 

homozygotes as members of this class and the others as 

nonmembers, then the variant predicts the endophenotype with 

86.7% accuracy. A Fisher’s Exact Test for a difference in 

proportions among the classes gives a highly significant p-

value of 0.0002017. The ValVal genotype also predicts 

membership in the Interdental class with 69.8% accuracy 

(p=.041), but fails to predict membership in the Overall class 
(56.6%) or the other endophenotypes.  

Table 3: COMT genotype vs OtherFric classification 

Membership ValVal MetVal MetMet 

OtherFric+ 7 1 2 

OtherFric- 4 29 10 

 

The participants in the OtherFric class tended to make 

errors of other types as well. Table 4 lists the mean number of 

errors made in various phonetic classes. The ValVal 

homozygotes had higher mean error counts in almost every 

class of segment, including the class of all fricatives. ANOVA 

tests, however, failed to find a significant difference in any 
class except OtherFric. 

Nevertheless, given the different numbers of errors in 

almost all phonetic classes, one would expect COMT 

Table 2: Promising genetic variants linked to each endophenotype. MDA: Mean decrease in accuracy calculated by the RF 

algorithm after random permutation (see text). Rank: rank of variant on list when ordered by MDA. 

 

Class MDA Rank rs# Chr Gene Variant Type Notes on gene/protein 

Rhotic .000501 7 11592585 10 JAKMIP3 missense possible link to Alzheimer’s 

Alveolar .000576 11 3751335 13 MTUS2 intron linked to nervous system development 

Interdental .000932 3 71389065 16 TEKT5 in-frame insertion high expression in fetal brain 

Lateral .000403 12 215976 12 CACNA1C missense linked to bipolar disorder 

OtherFric .001683 1 4680 22 COMT missense neurotransmitter metabolizer 

Overall .000939 1 778593 5 NDUFA2 5’-UTR region associated with Leigh Syndrome 
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genotype to be associated with overall GFTA scores (Table 4, 

bottom). ANOVA tests of the association of genotype with 

either Raw or Standard scores fails to find significance 

(p=.125 and p=.101, respectively). However, if the genotype is 

reduced to a binary distinction between ValVal homozygotes 

versus Met carriers, then the ANOVA test does find a 

significant difference in Standard scores (p=.0324), and almost 
so for Raw scores as well (p=.0506). 

Table 4: Mean errors and scores by genotype. 

measure ValVal MetVal MetMet ANOVA p 

Rhotics 4.91 2.93 3.08 .322 

Laterals 2.00 1.17 1.17 .544 

Stops/Nasals 1.09 0.73 1.17 .677 

AlveolarFrics 4.45 2.73 3.25 .450 

Interdentals 2.36 0.93 1.33 .0564 

OtherFrics 4.73 1.23 2.25 .0298 

all fricatives 9.73 4.6 6.33 .0997 

     

Raw score 18.1 9.0 11.6 .125 

Standard score 78.7 91.3 89.9 .101 

 

A closer examination of the data revealed an important 

confound with sex: all 11 ValVal participants happen to be 

male, while 16 of 30 MetVal and 4 of 12 MetMet participants 

are female. When the females are removed from the analysis, 

then ValVal homozygotes are found to be significantly worse 

than Met carriers for both Raw and Standard scores (p=.0365 
and p=.0376). 

 

 

Figure 2: Standard score versus age and COMT 

genotype, with regression lines for each genotype. 

There is also a substantial confound with age. As Figure 2 

shows, the differences seen among genotypes from 5-7 years 

disappear at older ages, as most children show no signs of 

problems at 10 years old. Two-way ANOVAs including both 

age and genotype (VV versus Met carriers) find significant 

effects of both variables when predicting either Raw or 

Standard scores, although no significant interactions were 

found. The age effects are highly significant (p<0.001), while 

the effects of genotype are still marginally significant (Raw 

p=.0423 and Standard p=.0467). The genotype effect is 

stronger when the analysis is restricted to just males (Raw 
p=.0141 and Standard p=.0454). 

5. Discussion 

Although the cognitive effects of the COMT polymorphism 

have been extensively studied, to date there appear to be few 

studies of its association with language [39-41], or speech 

production in particular. Sugiura et al. [42] may be the first 

study to examine its effect on language development in young 

children. Using a standardized Japanese language exam, they 

found that young (ages 6-8) ValVal homozygotes performed 

significantly worse than Met carriers, but reach parity by age 

10. Our data show the same trends and thus broadly support its 

conclusions. However, the Japanese test only measured 

general language ability (vocabulary, comprehension, writing) 

and did not include an articulation test. On the other hand, [11-

15] found associations of neurochemical signaling genes – 

particularly DRD2, a dopamine receptor – with measures of 

SSD (including GFTA scores) and other language phenotypes, 

but their studies did not include COMT, a dopamine 

metabolizer. To our knowledge, this is the first study linking 

COMT polymorphism with speech sound development in 
particular.  

Our results also support the approach of using 

endophenotypes defined by phonetic classes as an aid to 

discovering promising genetic variants. Although it is likely 

that COMT is linked to language development in general, and 

perhaps to overall performance on the GFTA – rather than on 

fricatives in particular – there was no association in our data 

between COMT genotype and general “affectedness” as 

defined by the Overall class. In fact, this variant was not 

included in the random forest for the Overall class because its 

accuracy with the Overall class (57%) did not meet the cutoff 

for inclusion (66%). Thus the link to COMT may not have 

been found without the examination of participant 

subpopulations. Note also that the variants were not pre-

filtered for particular biological relevance, but rather included 

the whole exome. The fact that it nonetheless found a highly 

relevant gene may be taken as a promising sign of its 
effectiveness. 

6. Conclusions 

By breaking down the phenotype of SSD into endophenotypes 

based on phonetic sound classes, we were able to search WES 

data and successfully find a link to a gene that is likely to be 

relevant. In future work we will consider the possibility of 

defining endophenotypes based on still other types of data, 
such as acoustic measurements. 
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