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Abstract
Automatic recognition of spontaneous emotion in conver-

sational speech is an important yet challenging problem. In this
paper, we propose a deep neural network model to track contin-
uous emotion changes in the arousal-valence two-dimensional
space by combining inputs from raw waveform signals and
spectrograms, both of which have been shown to be useful in
the emotion recognition task. The neural network architecture
contains a set of convolutional neural network (CNN) layers
and bidirectional long short-term memory (BLSTM) layers to
account for both temporal and spectral variation and model con-
textual content. Experimental results of predicting valence and
arousal on the SEMAINE database and the RECOLA database
show that the proposed model significantly outperforms model
using hand-engineered features, by exploiting waveforms and
spectrograms as input. We also compare the effects of wave-
forms vs. spectrograms and find that waveforms are better at
capturing arousal, while spectrograms are better at capturing
valence. Moreover, combining information from both inputs
provides further improvement to the performance.
Index Terms: speech emotion recognition, computational par-
alinguistics, deep learning

1. Introduction
In recent years, increasing attention has been given to the study
of the emotional content in speech signals, and many sys-
tems have been proposed for automatic emotion recognition
in speech. For most systems, the goal is to produce a cate-
gorical label among a set of ‘basic emotions’ such as disgust,
sadness, happiness, fear, anger and surprise [1]. This view of
emotion originates in expressions in human language describing
emotional experiences in terms of words [2]. However, speech
signals contain more subtle changes in emotion, especially for
conversational speech and spontaneous emotion in which both
speakers’ affective states change continuously over time. In this
case, a categorical approach may fail to capture changes. Also,
some emotions are easier to distinguish, while others share sim-
ilar characteristics [3]. The similarity/disparity issue among
emotion categories also represents a potential problem in au-
tomatic emotion classification. However, another fundamental
approach to emotion detection is to map emotion into a con-
tinuous multi-dimensional space. The underlying assumption
in this approach is that a common physiological system is re-
sponsible for all emotional states. When measuring emotion
using this dimensional approach, the emotion recognition task
can be treated as a regression problem. In each of the dimen-
sions, we can use a series of float numbers to represent the tar-
get’s emotion. One of the most prominent models taking this
viewpoint is Russell’s circumplex model of emotion [4]. In the
circumplex model, a person’s emotion is described as a point in
the arousal-valence two-dimensional space. Predicting contin-

uously changing arousal and valence is inherently a more diffi-
cult task than classifying discrete emotions for each utterance,
due to its high granularity in both the emotion domain and the
time domain. However, this approach to emotion detection can
better represent natural speech in real situations. Our work fol-
lows the circumplex model and our goal is to produce numerical
predictions for both arousal and valence from speech.

In traditional methods of emotional speech recognition, fea-
tures are hand-engineered, selected using prior knowledge of
the auditory signal processing area, such as pitch, intensity,
speaking rate and mel-frequency cepstral coefficients (MFCC)
[5]. However, recent advances in computing resources and neu-
ral network architectures have enabled end-to-end speech pro-
cessing, in which inputs are drawn directly from minimally
processed speech data such as waveforms and spectrograms
[6, 7, 8]. In recognizing emotional speech, mel-scale filter-
bank spectrograms are widely used as input features to neural
network models because of their close relationship with hu-
man perception of speech signals [9]. Also, recent research
has shown that neural networks can automatically learn some
emotion-related feature representations such as energy and fun-
damental frequency from raw waveform signals [10]. However,
there is currently no work exploring whether waveforms and
spectrograms also contain complementary information on emo-
tional speech. In this work, we combine inputs from raw wave-
form signals and mel-scale log filter-bank features to examine
their joint effects. The neural network architecture that we use
contains a set of convolutional neural network (CNN) layers
and bidirectional long short-term memory (BLSTM) layers to
account for both temporal and spectral variation and model con-
textual content.

The paper is organized as follows. Section 2 summarizes
prior work on emotion recognition from speech. In Section 4,
we introduce the input features and the topology of the neural
network architecture. The corpora used are described in Sec-
tion 3, and our experimental results are presented in Section 5.
Finally, in Section 6 we conclude and present future work.

2. Related Work
There has been considerable research on improving neural net-
work structures for emotion recognition in speech. For most
such research, the goal is to predict a label among a fixed set
of discrete emotions. Han et al. [11] proposed a deep neu-
ral network and extreme learning machine (DNN-ELM) model
to recognize excitement, frustration, happiness, neutral and sur-
prise. Mao et al. [12] used a CNN to learn affect-salient features
from spectrograms. In the experiments, they used 4 corpora
with four different sets of emotions, including: (1) anger, dis-
gust, fear, happiness, sadness, surprise, and neutral; (2) anger,
disgust, fear, joy, sadness, boredom and neutral; (3) anger, joy,
surprise, sadness and neutral; (4) anger, joy, surprise, sadness
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and disgust. Lee et al. [13] used RNN on frame-level hand-
engineered features to recognize happiness, sadness, anger and
neutral. Recently, Mirsamadi et al. [14] used RNNs with an
attention mechanism to focus on emotionally salient regions for
happiness, sadness, anger and neutral. Huang and Narayanan
[15] used CNN-LSTM-DNNs with an attention mechanism to
classify anger, disgust, fear, joy, sadness, and surprise. Kim et
al. explored the effect of 3D CNNs [16] and skip-connections
[17] on happiness, sadness, anger and neutral. Cummins et al.
[18] used pre-trained image classification CNN to process spec-
trograms and recognize angry, emphatic, neutral, postive and
rest. Finally, Bertero and Fung [19] found that their CNN fil-
ters concentrated on the average pitch range related to emotions
such as as angry, happy and sad on the frequency domain and
activated during the speech sections while ignoring the silence
parts on time domain. In the work discussed above, a total of
8 different sets of discrete emotions are used, which makes it
difficult to compare models optimized for different emotions.

There is also research on predicting continuous emotion in
the arousal-valence two-dimensional space. Giannakopoulos
et al. [20] conducted emotion recognition in arousal-valence
space and found that this approach offers a good affective rep-
resentation for speech. Towards better feature representations,
Schmitt et al. [21] explored bag-of-audio-words representation
of MFCCs as input to the regression model, and Zhang et al.
[22] performed feature enhancement using an autoencoder with
LSTM. Towards better neural network structures, Trigeorgis et
al. [10] proposed an CNN-LSTM-DNN on waveform signals,
and Han et al. [23] concatenated different regression models
to exploit their individual advantages. However, little exist-
ing work has explored the difference in predicting valence and
arousal [24].

3. Corpora

To evaluate the performance of our model, we need speech cor-
pora with continuous annotations of arousal and valence on a
high granularity. For this purpose, we chose two corpora of nat-
ural conversational speech: the SEMAINE database [25] and
the RECOLA database[26].

3.1. The SEMAINE database

The SEMAINE database was collected to study emotionally
colored conversations in English and has the highest annota-
tion granularity of all publicly-available corpora. In SEMAINE
recording, two speakers in each conversation are a user and an
‘operator’ who simulates a Sensitive Artificial Listener (SAL)
agent. The goal of the operator is to engage the user in emo-
tional conversations by asking questions and expressing atti-
tudes, such as ‘Anything else nice happened this week?’ or ‘It is
all rubbish.’ To ensure that we are looking at truly spontaneous
emotions in speech, we use only the Solid-SAL session with the
most natural operator interactions, and look only at the user’s
turns from each conversation. The user’s emotion is annotated
by 6-8 annotators for arousal and valence at 20ms intervals; an-
notation scores range from -1 to 1 with 4 decimal places. We
segment the 83 conversations with 24 users into turns according
to the transcripts, aligning the user turns with the averaged man-
ual annotations. We randomly employ 70% of the conversations
with 934 6s segments as the training set, and the remaining 30%
with 396 6s segments as the test set.

Figure 1: The architecture of the proposed model.

3.2. The RECOLA database

The RECOLA database is a multi-modal corpus of spontaneous
collaborative and affective interaction in French. After complet-
ing a self-report questionnaire, 46 subjects watched video clips
for positive/negative mood manipulation and then participated
in a task in which they were asked to reach consensus on how to
survive in a disaster scenario. This task was intended to trigger
emotional communication between participants. Conversations
were annotated for arousal and valence at 40ms intervals by 6
annotators; scores range from -1 to 1 with 2 decimal places.
The version we employ contains 23 conversations, each lasting
5 minutes. Since both speakers show spontaneous emotions and
turn-taking information is not provided, we use entire conversa-
tions without segmenting speaker turns. As with the SEMAINE
database, we randomly use 70% with 800 6s segments for train-
ing and 30% with 350 6s segments for testing.

4. Model
We use an end-to-end deep convolutional recurrent neural net-
work to perform emotion recognition; the architecture of this
network is shown in Figure 1. The main difference from a
standard CNN-LSTM-DNN architecture is that two sets of 1-D
CNN layers are used separately to process two types of raw fea-
tures we believe to contain complementary information about
arousal and valence. The output of these CNN layers are then
concatenated together and fed into the BLSTM layers to gener-
ate the prediction of both arousal and valence. The CNN layers
can reduce temporal and spectral variation and exploit the in-
formation contained in the two inputs, while the BLSTM layers
can take contextual content into account and generate predic-
tions with high temporal granularity.
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4.1. Input Data

4.1.1. Raw waveform signals

With the use of deep neural network structures, raw waveform
signals have been shown to be useful in numerous speech recog-
nition tasks, providing information such as loudness, energy and
pitch. For preprocessing, we normalize waveform signals on the
conversation level with zero mean and unit variance to reduce
the inter-speaker difference. Then we re-sample the speech to
16kHz sampling rate, and segment the conversation into 6s seg-
ments with 96,000 samples as the waveform input. An example
of the raw waveform signals is shown at the upper left corner of
Figure 1.

4.1.2. Spectrogram features

Previous studies have found that the waveforms and the spectro-
grams provide complementary information in learning acoustic
models [8]. These findings have inspired us to include spectro-
grams as another input to our neural network. We use the output
of a 40-dimensional mel-scale log filter bank as the spectrogram
features. Similar with our preprocessing of waveforms, we first
perform normalization and segmentation. The spectrogram fea-
tures and the first and second temporal derivatives are then com-
puted over windows of 25ms length and 10ms stride, resulting
in three 40*600 matrices for each 6s segment. An example of
these spectrogram features is shown at the upper right corner
of Figure 1. The horizontal axis represents time in frames, and
the vertical axis represents filter banks with different frequency
ranges. For display purpose, the temporal derivatives are not
shown in this figure.

4.2. Neural Network Architecture

4.2.1. CNN layers

For the waveform input, the CNN layers are used to extract in-
formation in different temporal scales. The first layer has 40
channels with a kernel size of 80, followed by a max pooling
layer with size of 2. The second layer has a kernel size of 800,
followed by a cross-channel max pooling layer with a size of
20. The convolution filter in the first layer has a receptive field
of 5ms, while the filter in the second layer has a receptive filed
of 100ms. In this way, the two CNN layers can jointly learn
frame-level features as well as long-term patterns.

For the spectrogram input, the CNN layers are used to re-
duce temporal and spectral variation while preserving locality.
The first layer is a spectral convolution layer. It has 80 channels
with a kernel size of 10, followed by a spectral max pooling
layer with size of 2. The second layer is a temporal convolution
layer. It has a kernel size of 10, followed by a cross-channel
max pooling layer with size of 10. The temporal convolution
filter for the spectrogram input has a receptive field of 115ms
which is roughly the same as the waveform input in order to
extract long-term patterns on a similar scale.

4.2.2. BLSTM layers

Both of the CNN layers produce 96000-dimensional output
vectors from the 6s inputs of waveforms and spectrograms.
The CNN output vectors are segmented into millisecond-level
pieces depending on the granularity of the annotations and con-
catenated together (e.g. two 320-dimensional pieces for 20ms
annotations) to feed into the BLSTM layers. We use two
BLSTM layers with 256 cells each to further reduce tempo-
ral variation and model contextual information. Finally, a fully

Corpus Model Results (CCC)
Arousal Valence

SEMAINE

Baseline 0.376 0.177
W Only 0.675 0.435
S Only 0.656 0.494
W + S 0.680 0.506

RECOLA

Baseline 0.317 0.162
W Only 0.674 0.361
S Only 0.651 0.408
W + S 0.692 0.423

Table 1: The concordance correlation coefficient (CCC) of the
baseline model and three proposed models on the SEMAINE
database and the RECOLA database.

connected layer follows each output of BLSTM to generate the
numerical predictions of arousal and valence.

5. Experiments
5.1. Overview

For our experiments on the two datasets, we first implement a
baseline model with hand-engineered features and BLSTM lay-
ers. We use the openSMILE toolkit [27] to extract the Com-
ParE feature set [28] with 6373 features, which is the official
baseline set for the INTERSPEECH ComParE challenges from
2013 to 2017. The hand-engineered features are extracted on
a 1s window with the same temporal stride as the annotations.
Then, to compare the difference between waveform and spec-
trogram inputs, we create three end-to-end models, one using
only waveform input (‘W Only’), one using only spectrogram
input (‘S Only’), and a third combining both inputs (‘W+S’). To
make the comparison fair, the BLSTM layers of the ‘W Only’
and ‘S Only’ models have half the number of cells as the ‘W+S’
model.

For all these experiments, we use the concordance correla-
tion coefficient (CCC) [29] as the objective function to train the
models. CCC measures the similarity between two sequences of
numbers, a metric which is commonly used in continuous emo-
tion recognition task. All the neural network models are trained
with a RMSProp optimizer with a learning rate of 5∗10−4 and a
batch size of 50. All CNN layers use ReLU activation. Dropout
layers with 0.5 dropout rate are added after the max-pooling
layers.

5.2. Results

The experimental results on the SEMAINE database and the
RECOLA database are shown in Table 1. Firstly, all our mod-
els perform significantly better than the baseline model, which
indicates that the models can learn salient features for arousal
and valence from either of the inputs. Moreover, in both of the
corpora, the ‘W Only’ model outperforms the ‘S Only’ model
in predicting arousal, while the ‘S Only’ model outperforms the
‘W Only’ model in predicting valence. This might be explained
by: (1) The fact that the arousal dimension is related to the
‘loudness’ of the speech, and the root-mean-square amplitude
for acoustic intensity can be directly extracted from the wave-
form. (2) The valence dimension is more complex and cannot
be easily related to any particular speech characteristics. How-
ever, the spectrograms offer more interpretability with respect to
articulation and pitch, and thus allow the model to learn patterns
from a spectral aspect. Finally, combining both the waveform
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Figure 2: Predictions of arousal on an instance.

and the spectrogram inputs, the ‘W + S’ model provides fur-
ther improvement in predicting both arousal and valence, which
demonstrates that waveforms and spectrograms do contain com-
plementary information of emotion. Comparing results for the
two corpora, the CCC for predicting valence on SEMAINE is
systematically higher than that on RECOLA. This may be be-
cause of the different strategies for inducing emotional conver-
sations. The operator in SEMAINE tends to induce extreme
values on valence, which makes the variance of valence 1.55
times larger than the variance of arousal. In RECOLA, the two
speakers are communicating after the positive/negative mood
induction procedure, and the variances of arousal and valence
are roughly the same. Our results are comparable to state-of-
the-art results on RECOLA with a CCC of 0.744 for arousal and
0.393 for valence [23], although this study used the full dataset
of 46 conversations while we could only obtain 23 of them. The
best results on the SEMAINE database reported Mean Correla-
tion Coefficient scores (MCC) for arousal 0.521 and valence
0.211 [30], while our ‘W + S’ model obtains MCC for arousal
0.682 and valence 0.511 on the test set.

5.3. Analysis

Figure 2 and Figure 3 show the ground truth and the predictions
of our three models on a segment of the SEMAINE database.
The solid blue line represents ground truth, the dashed yellow
line is the output of the ‘W Only’ model, the dotted red line is
the output of the ‘S Only’ model and the green line with both
dash and dot is the output of the combined ‘W + S’ model. The
transcript of the speech segment is ‘Ehh.... of all the characters,
Prudence is the one who gets under my skin, cos she’s so frig-
ging superior.’ From Figure 2, we observe that the ‘W Only’
model performs the best with correct polarity and trend, and the
‘S Only’ model predicts the wrong arousal polarity. From Fig-
ure 3, we observe that the ‘S Only’ model captures the descend-
ing trend while the ‘W Only’ model does not capture it. We
also find that the sudden drop in ‘S Only’ output at around 4.7s
matches the time of the word ‘frigging’, which is used here to
emphasize negative valence. To examine the effect of spectro-
gram input towards the output crest at 4.7s, we employ a novel
method called the Local Interpretable Modelagnostic Explana-
tions (LIME) [31], which has not yet been applied to any speech
recognition model. Since spectrograms share dimensional and
locality similarity with images, we use the image explanation

“...cos she's so frigging...”

Figure 3: The upper part is the prediction of valence on an
instance. The lower part is the LIME explanation of the crest in
‘S Only’ output.

module of LIME; the explanation of the output crest is shown
in the lower part of 3. The most important part of the spectro-
gram input for the crest is highlighted with bright colors, while
the other parts remain dark blue. The LIME explanation shows
that the high energy of the higher frequency components from
around 4.9s to 5.3s leads to the drop in valence prediction at
around 4.7s. Using the LIME method, we can also generate
explanations for other instances to better understand the perfor-
mance of the models.

6. Conclusions and Future Work

We propose a deep convolutional recurrent network model to
predict arousal and valence by combining inputs from raw
waveform signals and spectrogram features. We conducted ex-
periments on the SEMAINE and the RECOLA corpora, and our
models significantly outperform hand-engineered features. By
comparing the models with waveforms only and spectrograms
only, we found that waveforms are better at capturing arousal,
spectrograms are better at valence, and combining both pro-
vides further improvement. We also analyzed an instance us-
ing LIME to better understand the model. In future, we plan
to perform deeper analysis of the inputs to further exploit their
strength. We are also interested in building models that can
assign different weights to the inputs according to the charac-
teristics of the instance.
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