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Abstract

In this work, we investigate training speaker recognition sys-
tems on wideband (WB) features and compare their perfor-
mance with narrowband (NB) baselines. NIST speaker recog-
nition evaluations have mainly driven speaker recognition re-
search in the past years. Because of the target application of
these evaluations, most data available to train speaker recog-
nition systems is NB telephone speech. Meanwhile, WB data
have been more scarce not being enough to train factor anal-
ysis and PLDA models. Thus, the usual practice when deal-
ing with WB speech consists in downsampling the signal to 8
kHz, which implies potential loss of useful information. In-
stead, we experimented upsampling the training telephone data
and leaving the WB data unchanged. We adopt two techniques
to upsample telephone data: (1) using a feed-forward neural net-
work, termed Bandwidth Extension (BWE) network, to predict
WB features given NB features as input; and (2) using basic up-
sampling with a low-pass filter interpolator. While the former
intends to estimate the high frequency information, the latter
does not. The upsampled features are used to train state-of-the
art i-vector and recently proposed x-vector models. We evalu-
ated the systems on Speakers In The Wild (SITW) database ob-
taining 11.5% relative improvement in detection cost function
(DCF) with x-vector model.

Index Terms: deep neural network, bandwidth extension,
speaker recognition, i-vector, x-vectors

1. Introduction

Solving sampling mismatch without information loss has been a
research topic in speech. Different devices record speech at dif-
ferent sampling rates and thus create a mismatch later on while
training speech models. With regard to the paradigm of training
speaker recognition models, a considerable amount of speech
data is recorded at 8 kHz, mostly telephone conversations. We
will refer to these data as narrowband speech, NB, in the con-
text. On the other hand, a limited amount of speech is recorded
at 16 kHz, such as far field microphone speech. We will refer to
these data as wideband speech, WB. The traditional approach
to solving sampling rate mismatch is restricted to downsam-
pling WB data to match the sampling rate of NB data. How-
ever, downsampling operation degrades performance of speech
models as it throws away information that could potentially be
meaningful later on. Therefore, bridging the gap between sam-
pling mismatch and information loss could increase the quality
of training data and potentially enhance the result of the model
task. Two main approaches in literature have attempted to ad-
dress this issue: (1) bandwidth extension (BWE) techniques and
(2) mixed BW networks.

Early work showed that WB spectrum can be predicted
from extending NB spectral envelope by a linear model and
exciting it with white noise [1]. The linear model poses
the assumption that speech is relatively smooth and linear in

frequency domain. Most recent work focused on exploiting
the capability of deep neural net (DNN) given its success in
several tasks in speech processing and analysis, and DNN-
based speech BWE has demonstrated improvement in auto-
matic speech recognition (ASR). A feed-forward DNN trained
with log spectrogram features of NB and WB data was incor-
porated in an ASR system [2]. The authors were able to show
that DNN is capable of extending BW of a signal, and that these
features when used to train a downstream task like ASR would
give better performance compared to system trained only on NB
data. Multi-task learning and transfer learning were explored as
a means of assisting multi-lingual task and cross-lingual task
in [3]. Their BWE was trained on bandlimited WB data and
further retrained on NB data and achieves a subsequent 45%
relative WER reduction.

An alternative approach is to modify the NB features by
applying some transformation on them to match some specific
properties of WB data and then train a neural network, along
with the available WB data, to perform the task of interest. Au-
thors in [4] trained a mixed BW ASR on log-mel filter banks.
Authors use 22 and 29 dimensional filter banks for NB and WB
data respectively. The filters are designed such that the first 22
filters of WB data are aligned with that of NB data. The NB
features are zero padded (transformed) to match the dimension
of WB features. The neural connections of the network are op-
timized to learn from the first 22 filter banks for the NB data
and the entire feature vector for the WB data.

All the techniques discussed so far are developed for ASR
applications. To our knowledge, there is not yet any literature
that has applied similar approaches to speaker recognition. In
this work, we present two independent case studies: (1) training
the state-of-the art i-vector speaker recognition system [5] on
BW extended speech and (2) training the recently introduced
x-vector [6, 7] model on mixed BW speech. In the former
we study the impact of BW extension on the performance of
the model when tested on WB data. The later study should be
seen as a precursor to our interest in training mixed BW systems
in end-to-end fashion (without using a separate BW extension
network). In this approach, instead of using a separate network
to do bandwidth extension, we intend to evaluate whether the
x-vector network can learn to work with NB and WB at the
same time. To achieve this, we upsampled the NB audio to
WB using standard interpolation with a low-pass filter. We have
observed encouraging results with this approach (11.5% relative
improvement in detection cost function (DCF) on Speakers In
The Wild (SITW) [8] database).

The outline of the paper is as follows. Section 2 introduces
the state-of-the-art speaker recognition system used in our ex-
periments. Section 3 describes the upsampling techniques used
in this work. Section 4 presents our experimental setup. Results
are discussed in Section 5 followed by conclusions in Section 6.
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2. Speaker Recognition Systems

This section describes the two main speaker recognition sys-
tems used in this work, i-vector and x-vector models. Both sys-
tems were built using the Kaldi speech recognition toolkit [9].

2.1. i-vector system

The i-vector extractor [5] transforms the recording feature se-
quence into a fixed-dimensional embedding. To do it, each
speech segment is modeled by a Gaussian mixture model
(GMM) whose super-vector mean M is assumed to be

M; =m+ Tw, (€))
where m is the GMM-UBM means super-vector (speaker-
independent mean), T is a low-rank matrix and w is a standard
normal distributed vector. M defines the total variability space,
i.e. the directions in which we can move the UBM to adapt it
to a specific segment. The maximum a posteriori (MAP) point
estimate of w is the i-vector embedding. We used a 2048 com-
ponent UBM with 600 dimensional i-vectors.

2.2. x-vector system

Recent works [6, 7] introduced a successful neural network ar-
chitecture to map sequences into speaker discriminant fixed-
length vectors. The authors denominated these embeddings as
x-vectors. The network receives a sequence of feature frames,
which are processed by several layers. The result is summa-
rized by a pooling layer that computes mean and standard de-
viation over time. Mean and standard deviation are concate-
nated together and propagated to the output through a series of
feed-forward layers. The output is a dense layer with softmax
activation predicting the speaker posteriors. Before the pooling
layer, we used a time delay neural network (TDNN) (a.k.a. 1D
convolutions). The sequence embedding is extracted from the
first affine transform after the pooling layer (before applying the
non-linear activation).

The results in [10] indicate that x-vector can outperform i-
vectors and be robust across datasets. However, x-vector mod-
elling is a data greedy approach and is able to beat i-vector mod-
els when presented with large amounts of training data. Authors
in [10] used various data augmentation techniques to overcome
this problem.

2.3. PLDA

We use full-rank probabilistic discriminant analysis [11] as our
back-end to test both the x-vector and i-vector models. They
were centered and projected to a lower dimensional space us-
ing LDA. LDA dimension was set to 150. All the vectors are
length normalized and log-likelihood ratios are evaluated using
the back-end. Finally, scores were normalized using adaptive
symmetric norm (S-Norm) [12].

3. Upsampling Techniques

This section describes the two main upsampling techniques we
used in our work.

3.1. Bandwidth Extension Network Training Procedure

We used a feed-forward Deep Neural Network (DNN) for BW
extension. Since our goal was to predict WB features given NB
features as input, we need to have matched WB and NB feature
pairs for training. For this purpose, we took real WB data and
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Figure 1: The DNN-based BWE Training Pipeline
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Figure 2: log-spectrogram comparison of estimated WB from
BWE (upper) and real WB (lower)

we downsampled it to 8 kHz. Then, the latter were used as in-
put to the network and the former as the target output. Similar
to [2], we used log-power spectrum (LPS) features as input and
output. The input spectrogram had dimension 129 and the out-
put dimension 257, including the offset component. A context
of 5 past and future frames was used to predict the WB spec-
trogram of the current frame. Hence the input to the network is
1419 dimensional and the output was of 257 dimensional. Ut-
terance level mean variance normalization was applied on both
the input and output of the network before training.

The network had 3 hidden layers with 2048 neurons per
layer. Rectified linear unit (ReLu) nonlinearity is used in each
layer. Stochastic Gradient Descent (SGD) optimizer was used
to train the network with an initial learning rate of 0.01 and a
momentum of 0.9. Mean squared error objective function was
used as objective. Learning rate was reduced by a factor of
2 when the loss did not improve for two consecutive epochs.
Mini batch size was set to 128 frames and in each epoch the
network was trained on 80,000 mini batches. In each epoch, all
the mini batches were randomly sampled from the training data.
Figure 1 shows the pipeline we used to train the BWE. Figure 2
shows the spectrogram output of the BWE network along with
the ground truth for a randomly picked utterance (The network
is not trained on this utterance)

3.2. Upsampling with low-pass filter interpolator

The baseline upsampling is the traditional method used in sig-
nal processing. Zeros are interpolated between each wav sam-
ple. A low pass filter eliminates the aliases created in the higher
band, i.e., interpolates the unknown signal values. We used the
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Figure 3: The i-vector pipeline

implementation in SoX ', which used a filter with 125 dB of
attenuation for the rejected band.

4. Experimental Setup

In this section, we introduce the datasets we used to train and
evaluate our models. We then explain the experimental setup of
i-vector and x-vector systems.

4.1. Datasets Description

A small portion of WB dataset that we used in this work is col-
lected from Mixer6 and NIST SREOS8 corpus. These data com-
prises of microphone recordings of telephone calls. The same
speaker is recorded on several microphones. Hence, there ex-
ists a lot of redundancy. There is also speaker overlap between
the telephone corpus (NB) and the microphone data (WB). Ma-
jor portion of the WB corpus comes from recently introduced
VoxCeleb dataset [13] which contains speech from celebrity
speakers. WB consists of 30974 utterances collected from 1871
speakers.

NB data that we used for this work comprises of Switch-
Board 2 Phases 1, 2 and 3, SwitchBoard Cellular and NIST
2004 - 2010 including Mixer 6. For NIST SREO8 and MX6
there exists some speaker overlap between the NB and WB
datasets. NB dataset used in our work consists of 86594 ut-
terances collected from 7001 speakers.

Speakers In The Wild (SITW) [8] is used for evaluating
our models. SITW consists of variable length utterances from
6-240 seconds. Speech from this corpus consists of video audio
from native English speakers, with naturally occurring noises,
reverberation and device variability. The sampling frequency of
this dataset is 16 kHz (WB). We tested our models on the core
and assist conditions of SITW.

Thttp://sox.sourceforge.net
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Figure 4: The x-vector pipeline

4.2. i-vector system trained on BW extended data

We train an i-vector system on wideband data obtained by ex-
tending the BW of NB data using the BWE network and origi-
nal wideband data. Since we trained the BWE network on LPS
features, we compute LPS features for the NB data and for-
ward pass them through the BWE. The output of the network
is LPS features in WB domain. These features are converted
to MFCCs with 24 cepstral coefficients and 30 filter banks. We
combined these MFCCs with the ones obtained from original
WB data. We used this combined data to train the i-vector sys-
tem. i-vectors obtained for the train and evaluation data are
used to train and score the back-end PLDA model. We did not
use any data augmentation for training the i-vector extractor and
PLDA back-end. The i-vector system trained on BW extended
data and original WB data is explained pictorially in Figure 3.

We compare the results obtained using the above model
with two i-vector baselines: NB and WB baselines. NB and
WB baselines are trained on 23 and 24 dimensional MFCC fea-
tures respectively. NB system has 23 mel-filter banks and WB
data has 30 mel-filterbanks. No data augmentation is used for
training. NB baseline is trained with the entire NB data men-
tioned in 4.1 along with downsampled WB data. WB baseline
is trained only on the available WB data. To evaluate the NB
baseline, SITW corpus is downsampled to 8 kHz to match the
sampling frequency of the training set.

4.3. Mixed BW x-vector system

To train the mixed BW x-vector system, we upsampled the NB
data using the technique described in Section 3.2. Note that
this technique is not going to fill in any additional frequency
information in the upper half of the spectrum but preserves the
information present in the lower half. This upsampled data is
combined with original WB data. We used data augmentation
on the training data to increase the amount and diversity of the
data. The protocol we followed to augment the data is similar
to Section 3.3 in [10]. We extract 24 dimensional MFCCs with
30 mel-filterbanks on the clean and augmented data. We then
train a mixed BW x-vector system on these features. The train-
ing procedure for the mixed BW x-vector system is depicted
pictorially in Figure 4.

We train a NB baseline system to compare the results ob-
tained from the mixed BW x-vector system. The NB baseline
system 1is trained on 23 dimensional MFCC features with 23



Table 1: Results of i-vector system trained on WB data and DNN
based BW extended data (no data augmentation is used to train
the i-vector extractor or PLDA)

| EVAL CORE EVAL ASSIST
i-vector DCE  DCF DCFE  DCF
Systems EER |05 5> | EER 55 e
NB Baseline 9.68 0.809 0.661 | 11.78 0.822 0.655
WB Baseline 6.30 0.652 0466 | 8.99 0.658 0.526
WB-BWE 8.99 0.775 0.608 | 10.86 0.756 0.610
WB-BWE +
PLDA trained | 6.29 0.639 0.484 | 8.99 0.660 0.529
on WB

mel filter banks. Entire NB data available is used for training
the system along with downsampled WB data. To test the NB
baseline system evaluation test set is downsampled to 8 kHz
to match the sampling frequency of the training set. We used
augmentation for the baseline system to be consistent with the
mixed BW system.

5. Results
5.1. i-vector system trained on BW extended data

Table 1 present results for the i-vector system experiments in
terms of EER and detection cost function (DCF) in two operat-
ing points. The first two rows shows the NB and WB baselines
respectively. The WB baseline, even though is trained on much
less data compared to NB system, performed better. This can
be due to the fact that SITW domain is similar to VoxCeleb.
Both are WB speech data collected from Internet videos. This
means that having in domain data can be more important than
having more training speakers. The i-vector system trained with
BW extended data (from NB) and original WB data (we label
this experiment WB-BWE) performed better compared to the
NB baseline showing significant improvements (9.6% reduction
in EER for the core condition). However, the system’s perfor-
mance did not improve compared to the WB baseline (row 2).
This means that including the BW expanded data in training
along with the WB data did not give any additional advantage
when tested on SITW. We modified this experiment by train-
ing the PLDA backend on i-vectors of the WB data only (the
i-vectors obtained from the BW expanded features are not in-
cluded in PLDA training). In this last case the only thing trained
on BW extended data and WB data are the UBM and i-vector
extractors. The result we obtained from this experiment were
very similar to the WB baseline system. To explain this result,
we hypothesize that for a given speaker, there is still signif-
icant mismatch between his/her i-vectors coming from BWE
speech and i-vectors coming from real WB data. When pool-
ing BWE and WB i-vectors to train PLDA, we obtain a within-
class covariance larger than that of WB data only. Furthermore,
in SITW enrollment and test data are true WB speech. That
means that training PLDA on pooled BWE and WB data over-
estimates the within-class covariance we should use for this par-
ticular application.

5.2. Mixed BW x-vector system

The NB baseline results for x-vector system are given in row
1 of Table 2. We used data augmentation in this experiments.

1114

Table 2: Results of mixed BW x-vector model

| EVAL CORE EVAL ASSIST
x-vector DCF DCF DCF DCF
Systems ‘ EER 1§35 12 ‘ EER 5  E2
NB Baseline
el ‘ 454 0.623 0.425‘ 674 0.650 0468
Mixed BW ‘ 440 0.570 0.376‘ 657 0.612 0.435
system

Since we did not use data augmentation for the i-vector exper-
iments, we cannot compare this baseline to the NB baseline in
i-vector experiments. The mixed BW xvector system trained on
upsampled data and original WB data is given in row 2 of Table
2. The mixed BW systems perform better for both the evalua-
tion conditions compared to the baseline. This is because the
x-vector model, being a DNN, is able to optimize its neurons to
respond to the lower half of the spectrum for NB data and to use
the entire spectrum (all cepstral coefficients) for the WB data.
The main advantage with this approach is that it eliminates the
need for a separate BWE network. We did not observe huge gap
in performance difference between NB and WB baselines for x-
vector system as we did for i-vector. This is mainly because of
the limited amount of WB data available to train the WB base-
line x-vector model compared to NB baseline. As mentioned in
2.2, x-vector models can outperform i-vector models only when
trained on large amounts of data.

6. Conclusions

In this work, we presented two independent case studies: (1)
training the state-of-the-art i-vector speaker recognition system
on BW extended speech and (2) training the recently introduced
x-vector system on mixed BW speech. We observed that, for
SITW dataset, pooling more data (by extending the BW of NB
data) to train the i-vector extractor and PLDA backend did not
give improvements over the WB baseline system. Training the
i-vector extractor and backend model using smaller amounts of
in domain data actually helps more than pooling more data by
extending the BW. For mixed BW x-vector system, where the
WB data is combined with upsampled NB data, we observed
improvement in performance over the baseline system. The ad-
vantage with this model is that it eliminates the requirement of
a separate BWE network to predict the WB speech. In future,
we would like to extend this work by training Teacher-Student
model [14], where the student model trained on NB data would
mimic the performance of the Teacher model trained on WB
data, thus adapting the model to the NB data. That way we
achieve task of classification and adaptation with a single model
and eliminate the requirement of a separate BWE network.
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