Interspeech 2018
2-6 September 2018, Hyderabad

Whistle-blowing ASRs: evaluating the need for more inclusive automatic
speech recognition systems

Meredith Moore', Hemanth Venkateswara®, Sethuraman Panchanathan®

! Arizona State University’s Center for Cognitive Ubiquitous Computing

mkmoore7@asu.edu,

Abstract

Speech is a complex process that can break in many different
ways and lead to a variety of voice disorders. Dysarthria is
a voice disorder where individuals are unable to control one
or more of the aspects of speech—the articulation, breathing,
voicing, or prosody—Ileading to less intelligible speech. In this
paper, we evaluate the accuracy of state-of-the-art automatic
speech recognition systems (ASRs) on two dysarthric speech
datasets and compare the results to ASR performance on control
speech. The limits of ASR performance using different voices
have not been explored since the field has shifted from gen-
erative models of speech recognition to deep neural network
architectures. To test how far the field has come in recog-
nizing disordered speech, we test two different ASR systems:
(1) Carnegie Mellon University’s Sphinx Open Source Recog-
nition, and (2) Google®Speech Recognition. While (1) uses
generative models of speech recognition, (2) uses deep neural
networks. As expected, while (2) achieved lower word error
rates (WER) on dysarthric speech than (1), control speech had a
WER 59% lower than dysarthric speech. Future studies should
be focused not only on making ASRs robust to environmental
noise, but also more robust to different voices.

Index Terms: speech recognition, voice disorders, dysarthric
speech,

1. Introduction

In the United States, 9.4 million adults have trouble using their
voices [1]. Speech is a complicated process with many poten-
tial breakpoints. A voice disorder occurs when voice quality,
pitch, and loudness differ or are inappropriate for an individ-
ual’s age, gender, cultural background, or geographic location
[2, 3]. Speech that is less intelligible due to a neuromuscu-
lar disorder is referred to as dysarthric speech. The speech of
individuals with dysarthria is highly variable—speech may be
slurred; have nasal, strained, or hoarse vocal quality; and vary
in tempo, rhythm, or volume of speech production. This wide
breadth of articulatory differences makes recognizing and un-
derstanding dysarthric speech a challenging problem. People
with voice disorders will often be able to communicate quite
clearly with those who are close to them: family, friends, care-
givers, however, they will be significantly less intelligible to un-
familiar communication partners [4]. This creates a social bar-
rier which prevents some individuals with voice disorders from
fully participating in their community [5].

With the popularization of products like Amazon Alexa®,
Google Home®, and Voice Assistants like Siri®, Cortana®, and
Google Now®, speech is being used now, more than ever, as a
means of digital interaction. Automatic speech recognition can
be used for a variety of assistive contexts, such as computer
interactions and phone-based interactions. However, individ-
uals with voice disorders generally cannot obtain satisfactory
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performance with commercially available ASR systems [6, 7].
To address this problem, many researchers have developed spe-
cific, robust, dysarthric speech recognition systems to varying
degrees of success. Dysarthric speech recognition is a difficult
problem to solve due to two main factors: the immense vari-
ability in the speech produced by individuals with dysarthrias,
and the relatively small datasets available to model dysarthric
speech and train robust recognition models.

1.1. Previous Work

A potential solution to recognizing significantly different voices
is to build personalized ASR systems that fit individual voices.
This methodology has been attempted for the last 30 years, and
there has not been significant progress. Of the dysarthric speech
recognizers created, those that use an extremely limited vocab-
ulary (10 digits) are able to achieve around 94% accuracy [8, 9].
Results from systems that use larger vocabularies are extremely
varied from 30.84% [10] to 97% recognition rate [11]. The
highest reported accuracy on the biggest vocabulary using the
least intelligible subjects was 85.05% from [12] using recurrent
models with Elman backpropagation networks. However, due
to the large variability in testing conditions—the intelligibility
of subjects, the number of subjects, the complexity of the vocab-
ulary, and the different evaluation metrics—it is very difficult to
objectively compare the efficacy of different algorithms.

This is not the first paper to evaluate the efficacy of off-the-
shelf ASR systems on non-normative voices. Most recently,
[13] evaluated the performance of Google’s®cloud-based ASR
system on speech from individuals with Parkinson’s Disease
in three different languages. However, speech from individu-
als with dysarthrias has not been tested since 2010 [6, 7]. In
the last eight years, there have been significant improvements
in ASR systems largely from the application of different deep
neural network models to the domain—namely long short-term
memory systems (LSTMs) [14, 15, 16] as well as distance mea-
sures such as the connectionist temporal classification (CTC)
[17]. We predict that when these off-the-shelf ASR systems are
tested with dysarthric speech, the system that uses deep neural
networks will outperform the system that uses generative mod-
els.

1.2. Robust Speech Recognition

Most of the robust speech recognition research has focused on
making speech recognition systems robust to background noise
such as bustling traffic, or a crying baby. These kinds of noise
are what we refer to as uncorrelated noise—meaning that there
is no correlation between the speech and the noise. The dogma
of the field of robust speech recognition is to take a dataset, add
noise to it, and then reconstruct the original utterance from the
noisy data. This has led to many good results as can be seen
in [18, 19, 20]. However, we suggest that there is a need for
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a stronger focus on what we refer to as correlated noise—i.e.,
noise that comes from the voice itself. Much of the noise-robust
ASR literature revolves around the central assumption that the
noise is uncorrelated with the speech. In many cases, this is not
a safe assumption, such as when dealing with accented speech
or speech from individuals with voice disorders.

1.3. Domain Adaptation

The idea of adapting a model that is trained on one dataset on
a different, but similar dataset and optimizing the model to per-
form well across domains is referred to as domain adaptation
[21,22]. We can formulate this study in terms of a domain adap-
tation problem and can use recent advances in domain adapta-
tion techniques to improve the robustness of ASR systems to
dysarthric speech.

1.4. Contributions

This paper presents an evaluation of how robust state-of-the-
art ASR systems are to dysarthric speech. We test a model that
uses generative methods (Gaussian Mixture Models and Hidden
Markov Models), and a system that uses deep learning tech-
niques. We compare the performance of these two systems on
dysarthric speech and normative speech to obtain a baseline of
how well state-of-the-art systems perform on differently-abled
voices. We then make a case that there is a significant opportu-
nity for improvement in state-of-the-art systems when it comes
to being robust to correlated noise. In general, the contributions
of this paper are to:

* Evaluate the performance of ASR systems on dysarthric
speech

* Bring the attention of the speech community to the need
for more inclusive ASR systems

2. Methods

2.1. Experiments

The performance of the two ASR systems was tested using the
two datasets described above—TORGO and UASPEECH. Each
dataset was fed to the ASR systems, and the word error rate
(WER) was calculated from the resulting prediction, as shown
in figure 1. Carnegie Mellon University’s Sphinx Open Source
Recognition (Sphinx), and Google Speech Recognition were
used as the ASR systems to test. Sphinx uses a combination of
HMMs and GMM models to recognize speech while Google re-
portedly uses an LSTM based network. Unfortunately, we must
treat these two ASR systems as black boxes, and rather than
directly compare their architectures, we will use them as bench-
marks for how the field has progressed in the last ten years, as
it has shifted from generative models to deep neural network
models.

We predicted that the Google model would have a lower
WER than the Sphinx model for both control and dysarthric
speech and that the dysarthric speech would have a higher WER
than the control speech.

2.2. Datasets

2.2.1. UASPEECH

The Universal Access Speech (UASPEECH) dataset from the
University of Illinois [23] was published in 2008 and consists
of speech samples from 15 individuals with dysarthrias, and 13
age and gender-matched control voices. The vocabulary used in
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Figure 1: The experimental set up used to test the performance
of two ASR systems (Sphinx and Google) on dysarthric and
control speech from two different dysarthric speech datasets
(TORGO and UASPEECH)

UASPEECH consists of command words (up, left, down, right,
etc.), common words (the, and, I, you, etc.), the phonetic alpha-
bet (alpha, bravo, charlie, etc.), digits 1-10, and 300 uncommon
words. There are a total of 765 words for each speaker, three
repetitions of each of the commands, letters, digits, and com-
mon words, and only one instance of the 300 uncommon words
per speaker. The speech from UASPEECH was collected using
a ’beep’ sound to segment the instances of speech, and because
of this, there is a lot of silence in the dataset.

2.2.2. TORGO

The University of Toronto’s TORGO database is a database of
acoustic and articulatory speech from speakers with dysarthria
[24] which was created in 2012. This dataset consists of speech
samples from 8 individuals with dysarthria and 7 control voices.
For our use case, we did not use the articulatory data, and just
focused on the speech. The vocabulary of TORGO consists
of non-words (vowel sounds, phoneme repetitions, etc), short
words (computer command words, words from the Frenchay
Dysarthria Assessment [25], words from the word intelligibility
section of the Yorkston-Beukelman Assessment of Intelligibil-
ity of Dysarthria [26], the 10 most common words in the British
National Corpus, and all of the phonetically contrasting pairs of
words from [27]. The dataset also contains both restricted sen-
tences and unrestricted sentences. Unrestricted sentences are
recorded from asking an individual to freely describe an image
rather than reading from the screen.

2.2.3. Performance Measures

Word Error Rate (WER) is used to measure the performance
of the ASR systems [28]. WER takes the sum of substitutions
S, insertions I, and deletions D from the hypothesized word
divided by the number of words in the ground truth label N.
While it may seem counter-intuitive, because of this formula-
tion, it is possible to obtain a WER that is more than 100%.

S+D+1

N M

In creating the UASPEECH dataset, the authors tested how
well the dataset could be understood by humans. To do this
they calculated the recognition rate of each dysarthric speaker
to correspond to the percent intelligibility. They calculated the
recognition rate as the number of correctly recognized words R,

WER =



Table 1: Comparison between the combined performance of the
ASR systems on dysarthric and control speech.

% Diff
59%

Control
T4%

Dysarthric
136%

WER

Table 2: Average Word Error Rate for each ASR system’s per-
formance on dysarthric and control speech

Category CMU Sphinx Google | % Diff
Dysarthric ~ 126% 43% 84%
Control 63% 20% 74%

% Diff 55% 44%

divided by the total number of words.

R

RR = ~ 2)

To compare the performance of both ASR systems to the
human intelligibility baseline recognition rate, we calculated
the recognition rate of both ASR systems. This recognition rate
is used to assess how well these ASR systems model human
intelligibility.

3. Results
3.1. ASR Performance

When the performance of the two chosen ASR systems was
evaluated, as expected, Google ubiquitously achieved a lower
WER than Sphinx. The WER of the control speech was lower
than the dysarthric speech on all test cases as shown in Table 1.
Table 2 shows that Sphinx had an 84% larger WER than Google
when the dysarthric speech was evaluated, and 74% larger when
control speech was tested. Sphinx had a 55% larger WER in
dysarthric data than control, and there was a 44% difference be-
tween the WER of the control and dysarthric speech when using
Google.

3.2. ASRs as a Model of Human Intelligibility

Figure 2 demonstrates the correlation between human recogni-
tion rate and what the ASR systems were able to correctly rec-
ognize. Each speaker from the UASPEECH database was tested
using human listeners to establish a level of intelligibility. These
percent recognition rates for each speaker are compared to the
human recognition rate reported in [23]. The numbers on the
x-axis correspond to a speaker, and the y-axis is the recognition
rate. Humans consistently perform better than both Google and
Sphinx in recognizing dysarthric speech, and Google outper-
forms Sphinx. When a simple linear regression is performed,
the correlation coefficient values for the trend lines show simi-
lar patterns: 0.958 for human, 0.920 for Google and 0.765 for
Sphinx.

4. Discussion

In general, the results were as expected: models that employ
deep neural networks (as Google does) perform better on both
control and dysarthric speech compared to models that use gen-
erative strategies (like HMMs and GMMs). Dysarthric speech
is recognized less often than control speech. Our analysis
demonstrates that ASR systems do not provide robust speech
recognition to individuals with voices that fall outside the range
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Figure 2: A comparison of the recognition rate of the three dif-
ferent models of intelligibility: Human, Sphinx, and Google.
Human recognition rates are denoted with the cross, Google
with the circle, and Sphinx with the square.

Table 3: The Recognition Rate of Dysarthric Speech by Hu-
mans, Sphinx, and Google

Speaker Sphinx Google Human
1 0% 0% 2%
2 0% 1% 6%
3 0% 0% 7%
4 0% 1% 15%
5 0% 7% 28%
6 3% 22% 43%
7 2% 22% 58%
8 2% 19% 62%
9 8% 44% 62%
10 3% 54% 86%
11 19% 52% 90%
12 18% 63% 93%
13 23% 68% 93%
14 23% 62% 95%

of “normal’ voices.

Part of the reason that these error values are so large is that
the average length of the utterances N, = 1.56 is very small.
Often times, individuals with dysarthrias will speak slowly or
add breaths between syllables. The models tested do not seem
to be robust to this kind of noise. The difference between con-
trol and one individual’s dysarthric speech is shown in Figure
3, in this comparison it is clear that the speech is staccato and
slow. These systems often interpret these pauses or changes in
tempo as the beginning of new words, and thus the WER of the
word is often greater than one. With N, being so small, any
language model that the ASR systems have built are able to be
used. This also could lead to an increase in WER.

5. Proposed Directions

We propose that more research should be focused on creating
ASR systems that are robust to both correlated and uncorrelated
noises in order to make voice recognition systems more inclu-
sive of different voices. Through creating such a system, not
only will individuals with speech disorders be able to be better
understood by ASR systems but in general ASR systems will be
more robust to complex noise. This is a great example of uni-
versal design—the explicit needs of individuals with disabilities
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Figure 3: A comparison of the waveform of two speech samples
from UASPEECH. In a, the speech is from an individual with
a dysarthria. The speech from b is from a control subject. The
word that is spoken is ’autobiography’.

become the implicit needs of the general population. Creating
inclusive ASR systems for individuals with dysarthria will only
help to make ASR systems more robust and widely applicable
in real-world settings [29]. We believe that the following areas
will be essential in building these robust systems.

5.1. Datasets

The datasets used to train ASR systems need to be more in-
clusive of different voices than the current datasets. Currently,
as shown in Table 4, there are three main dysarthric speech
datasets that are used. The total number of hours of dysarthric
data is around 58 hours of speech with very high variation.
However, one dataset of normative speech, Switchboard, has
260+ hours of speech data. Comparatively, the three dysarthric
speech datasets seem insignificant when compared to the size of
normal speech corpora. The lack of sufficient training data for
disordered speech is a bottleneck for the field. With the collec-
tion and publication of more data, we expect to create systems
that are more robust to complex types of noise, both correlated
and uncorrelated. One potential way to get more data is to cre-
ate it. In the last three years, Generative Adversarial Networks
[30] have shown that they have the power to generate lots of data
from a distribution. In order to augment the existing dysarthric
data that we have, we may need to collect more dysarthric data
to get a better idea of the distributions.

5.2. Benchmarking Tests

In order to create systems that are fully robust, a standard bench-
mark test will need to be created. Ideally, a standard test of how
robust a model is to different voices should be used to measure
the performance of new ASR systems. One of the biggest prob-
lems with the field of dysarthric speech recognition is that there
is not a consistent, objective way to compare the performance
of different algorithms.
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Table 4: An overview and comparison of the available datasets
for dysarthric speech recognition—[31], [24], and [23], and
one common normative speech dataset [32], shown in bold text.

Dataset Sub Data Type Utterances Hours

[31] 11 Audio Sentences 17.5

[23] 19 élusifl Isolated words 18
Audio, Non-words,

[24] 7 Visual, Isolated words, 23
Articulatory ~ Sentences

[32] 543 Audio Conversations 260+

5.3. Domain Adaptation

There seems to be great potential for domain adaptation tech-
niques to make ASR systems more robust to correlated noise.
The goal of domain adaptation is to optimize a model that is
trained on a source distribution D, to also perform well for
a target distribution D;. In the case of making ASR systems
more robust to different voices, D would be the normal speech
corpora that ASR systems are trained on, and D; would be the
datasets that have data from individuals with speech disorders.
Domain adaptation and transfer learning show a lot of promise
in making ASR systems more inclusive of different voices.

5.4. Robust Models

With the collection and creation of more data and the applica-
tion of domain adaptation techniques between normative speech
and disordered speech, we expect to create significantly more
robust models. These systems could also benefit from the appli-
cation of a person-centered model. By fine-tuning the machine
learning architectures to better understand the speaker’s voice,
the model can be made more robust. The application of other
cutting-edge machine learning techniques, coupled with more
data and benchmarking tests should lead to a system that is in-
clusive of all voices.

6. Conclusions

In the last ten years, the performance of ASR system has signif-
icantly improved. Because of this increase in ASR system ac-
curacy, the performance of ASR systems on dysarthric speech
needed to be reevaluated. The re-evaluation demonstrated the
poor performance of ASRs on dysarthric speech which led us
to conclude that there is a need for systems that are not only
robust to uncorrelated noise, but also for systems that are ro-
bust to correlated noise. If these ASR systems could be more
robust to correlated noise, it would make them more usable by a
population who have previously had a barrier to access for ASR
systems, and therefore make ASR systems more inclusive.
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