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Abstract 
ALS is a fatal neurodegenerative disease with no cure. Experts 
typically measure disease progression via the ALSFRS-R score, 
which includes measurements of various abilities known to 
decline. We propose instead the use of speech analysis as a 
proxy for ALS progression. This technique enables 1) frequent 
non-invasive, inexpensive, longitudinal analysis, 2) analysis of 
data recorded in the wild, and 3) creation of an extensive ALS 
databank for future analysis. Patients and trained medical 
professionals need not be co-located, enabling more frequent 
monitoring of more patients from the convenience of their own 
homes. The goals of this study are the identification of acoustic 
speech features in naturalistic contexts which characterize 
disease progression and development of machine models which 
can recognize the presence and severity of the disease. We 
evaluated subjects from the Prize4Life Israel dataset, using a 
variety of frequency, spectral, and voice quality features. The 
dataset was generated using the ALS Mobile Analyzer, a cell-
phone app that collects data regarding disease progress using a 
self-reported ALSFRS-R questionnaire and several active tasks 
that measure speech and motor skills. Classification via leave-
five-subjects-out cross-validation resulted in an accuracy rate 
of 79% (61% chance) for males and 83% (52% chance) for 
females.  
Index Terms: Amyotrophic Lateral Sclerosis, ALS detection, 
acoustic analysis 

1. Introduction 
ALS is a progressive, incurable, neurodegenerative disease that 
leads to decreased muscle function resulting in problems with 
movement, breathing, swallowing and speech. The disease is 
referred to as limb onset or spinal ALS when the first symptoms 
appear in the arms and legs, and bulbar ALS when it presents 
with speech or swallowing difficulty. Patients with limb onset 
ALS maintain speech much longer than those with bulbar onset; 
however, 80% of all ALS patients experience dysarthria, or 
unclear, difficult speech articulation [1]. On average, speech 
remains adequate for about 18 months after the first bulbar 
symptom appears [2]. Experts measure disease progression 
with the ALSFRS-R score, which measures various abilities 
known to decline as the disease progresses. We envision instead 
the use of automatic speech analysis as a proxy for disease 
detection and progression. In this paper, we evaluate speech 
features which characterize speech deterioration in ALS using 
the Prize4Life Israel dataset, and we validate them in the 
context of machine models which recognize disease presence. 
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The characteristics of dysarthria in ALS include 
hypernasality, hoarseness, strain, slow rate, imprecise 
articulation, monotone quality, reduced volume, longer stop 
closures, longer vowel duration, and smaller vowel space [3]. 
In addition, acoustic analysis has shown that ALS speech 
exhibits longer stop closures, longer vowel duration, deviant 
F0, jitter, shimmer, and unstable voice quality/phonation [1]. 
Nasality fluctuation also occurs in dysarthria, when velar 
control is affected [4]. The specific symptoms of dysarthria will 
vary from patient to patient, depending on the structures 
affected [1]. Research suggests that ALS dysarthria is distinct 
from other causes, such as frontotemporal dementia [5]. 
Outside the realm of ALS, dysarthria is also multifaceted, 
affecting intelligibility and articulation, with varying severity. 
Prior work on automatic detection of generic dysarthria has 
explored these different facets and severity levels using a 
variety of analytic techniques [6]–[11]. 

Progression rate of dysarthria also varies, and the change in 
speaking rate and intelligibility over time can identify slow and 
fast disease progressors [12]. Speech impairment may even 
begin close to 3 years prior to ALS diagnosis [13], offering the 
potential for monitoring high-risk subjects (e.g., familial ALS 
and head concussions) early. Clinical assessment often requires 
the reading of specially-designed passages designed to elicit 
dysarthria or apraxia of speech [14], and our work uses such 
passages. Several clinical assessment scales exist for dysarthria, 
but comparative assessment tools for the scales themselves do 
not exist. The dataset used in this study includes ALSFRS -R[2] 
scores for each recording. These ALSFRS-R speech scores, 
however, do not reflect the specific attributes of dysarthria, are 
subject to bias via self-report, and have poor granularity to 
characterize the many variations of ALS speech [1].  

Prior work using speech in the detection of ALS typically 
uses kinematic sensors to model articulation [15]-[16],   
analyzes acoustic patterns in speech, or measures prosodic 
elements such as vowel duration or speaking rate. Wang et al. 
[17] investigated lip and tongue articulation data with acoustic 
data simultaneously, and found that acoustic data alone could 
function as well as acoustic data with lip and tongue data in an 
SVM regression of acoustic features using a balanced set of 
speakers with respect to intelligible speaking rate. The features 
were selected from the OpenSMILE [18] set, and the same 
features were applied to both males and females. A second 
study explored classification of the ALS condition using the 
same features applied to SVM and DNN classifier [19]. 
Alternate approaches used formant trajectories to classify the 
ALS condition [20], correlated formants with articulatory 
patterns [16], or used fractal features [21]. Our work extends 
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prior efforts in that it 1) functions on non-ideal, non-studio data 
collection conditions, as are likely to occur in at-home or in-
clinic recording scenarios, 2) considers an order of magnitude 
larger set of speakers and samples than the prior studies, 3) 
considers the different acoustic characteristics of males and 
females, and selects features which optimize analytics by 
gender, 4) requires fewer features than prior work to perform at 
least as well, in part because models are gender-specific (a 
single feature suffices for male speakers), 5) uses a baseline set 
of sentences and paragraphs recommended by speech therapists 
for evaluation of dysarthria in ALS, and 6) functions with 
training data collected across an unbalanced range of widely-
varying stages of disease progression as represented by widely-
used ALSFRS-R scores, as is likely to occur with data 
collection in the wild. Accuracy of our SVM classifiers exceeds 
comparable prior results, reported in literature. 

Our approach is synergistically positioned with the coming 
mobile devices and systems which support longitudinal data 
collection and analysis of ALS and other conditions. One such 
system is the ModelTalker  voice banking pipeline [22], and 
another is the Prize4Life ALS Mobile Analyzer [23], which 
monitors patient disease progression from home. The eventual 
goal is deployment of a reliable system which uses unbiased 
monitoring of speech quality as a proxy for condition progress 
monitoring, to enable prompt action in response to actual or 
predicted changes in patient condition. Our contributions 
toward this goal include 1) a gender-optimized, selection of 
features which characterize ALS dysarthria, 2) improved 
accuracy detection rates in SVM classifiers, 3) a reduced 
feature set size for simplicity and computational efficiency, and 
4) a data analysis process and machine model which is tolerant 
to recordings not made in studio conditions. 

2. Database curation and analysis 
The data originated from the ALS Mobile Analyzer [23], which 
was designed, developed, and deployed by the non-profit 
organization Prize4Life Israel [24]. One of the authors (SR) was 
involved in the data collection.  Its purpose was to enable the 
digital monitoring of disease progression in patients, without 
requiring them to leave home. The continued monitoring and 
tracking of patients will result in a growing database of 
objective measurements which may, in turn, help researchers 
find biomarkers of disease progression, facilitate the search for 
effective disease treatments, and ultimately, accelerate progress 
toward a cure. We focus on the resulting speech recordings 
here, which contain scripted speech collected from ALS 
patients and their caregivers (controls). The subjects had to read 
3 sentences or 1 paragraph in English at their own pace at a 
preferred location. Note that not all the subjects were native 
English speakers, and not all subjects read all the suggested 
sentences. 

 The dataset required curation because many of the original 
recordings were taken in uncontrolled conditions and were 
unsuitable for analysis. Files which contained less than 2 
seconds of speech, contained less than 2 syllables, (measured 
using nuclei syllables detection [25]), or contained loud 
background noise were removed from consideration. Next, the 
surviving files were filtered to removed silence and remaining 
sections of non-speech noise. The resulting corpus contained 
approximately 100 utterances each from male and female 
speakers, nearly evenly divided across controls and patients. 
The number of speakers in each condition, however, were 
unbalanced (27 female patients, 40 male patients, 30 female 

controls, 26 male controls), and we compensated for this in the 
analysis.  Given that mean age for controls was about 9 years 
younger than patients, we regressed out age using the data of 
the controls and applying the correction to all. To remove the 
effects of age, we made a linear fit between the features 
extracted for healthy people and their age. By using the 
parameters obtained with healthy people, we removed the 
“normal aging” effects from the features estimated for ALS 
subjects. Regressing age-corrected features to age confirmed 
that the age effect had been eliminated. 

The resulting dataset had one notable bias. The female 
portion of the dataset had a distribution of patients across the 
spectrum of severity, as measured by ALSFRS-R scores; but 
the male portion of the dataset was biased toward healthier 
patients whose conditions had not progressed as far as many of 
the female patients’ conditions had progressed. This means that 
the average male voice sample was closer to normal speech, and 
that the male model had fewer representative examples to 
characterize the more severely affected voices. Given this bias, 
and physiological differences, we chose to estimate 
independent models for males and females. 

 

 
Fig. 1: Total ALSFRS-R score distribution for Female/Male 
(F/M) subjects in the analysis. Most of the male patients’ 
ALSFRS-R scores ranged between 33-42, while most of the 
female patient’s scores ranged between 18-42. A lower 
ALSFRS-R score represents a more advanced disease 
progression.  
 

3. Methods and statistical analysis  
The goal is the correct classification of sound files from ALS 
patients and controls, for both males and females. To 
characterize the speech of the participants in the study we first 
extract features using openSMILE [18],  perform feature 
selection using a t-test, build models using standard classifiers, 
and cross validate leaving 5 subjects out.  

3.1. Feature extraction 

The openSMILE [18] toolkit provides a baseline set of pitch, 
energy, waveform, auditory, spectral, voice quality, and other 
important features for consideration. It includes many popular 
analytic techniques, including Cepstral analysis variants, 
formants, and RASTA-PLP, and provides support for both low-
level descriptors (LLDs) and summary analytics (thousands of 
potential features). We adopted the ComParE13 [26] subset (60 
msec frames and a 10-second hop) for baseline analysis, given 
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its successful use in the Paralingual Challenge. Tables 1 and 2 
show the most significant features for females and males, 
respectively, and Figure 3 characterizes the most informative 
single features providing the greatest separation between 
conditions. 

3.2. Statistical analysis and feature selection 

The ComParE13 openSMILE feature set contained thousands 
of features, so we check whether the features for inclusion in 
our models are statistically significant. Since multiple 
comparisons were performed, we applied false discovery rate 
(FDR) correction at q<0.05. Tables 1 and 2 below show the top 
statistically-significant candidates for the female and male 
models respectively. Note that all of the female features passed 
the FDR correction; however, none of the features from the 
male model survived the FDR correction criteria for statistical 
significance. Note that we used gender-specific features and 
created gender-specific models, since male and female vocal 
tracts are acoustically different.  

Table 1: Top significant features for female speakers 

Feature Name (Female) p-val 
mfcc-sma[3]_linregc2 1.91E-11* 
mfcc_sma[1]_linregc1 6.20E-10* 
mfcc_sma[3]_quartile3 1.02E-09* 
audSpec_Rfilt_sma[25]_percentile1.0 4.70E-09* 
mfcc_sma[3]_qregc3 7.82E-09* 

Table 2: Top significant features for male speakers 

Feature Name (Male) p-val 
voicingFinalUnclipped_sma_minPos 7.23E-05 
audSpec_Rfilt_sma[19]_lpc4 3.58E-04 
pcm_fftMag_spectralEntropy_sma_upleveltime90 4.27E-04 
pcm_fftMag_spectralVariance_sma_linregc2 4.95E-04 
pcm_fftMag_spectralVariance_sma_upleveltime50 1.06E-03 

 
Note that the selected male and female features are quite 

different. The only similarity in the set of top significant 
features are the “audSpecRfilt_sma” features, where the 
coefficient differences correspond to characteristic differences 
in the male and female vocal tracts. Beyond this similarity, 
MFCC coefficients characterize female voices, and spectral 
changes, the male voices. The low-numbered MFCC 
coefficients identified in the top 5 female features represent 
spectral activity which is typically below the range of healthy 
female voices, and suggest that abnormal phonation in ALS 
may be marked by the presence of these lower frequencies. In 
the male features, a higher spectralEntropy value suggests 
randomness or noise in the signal and fewer harmonics at 
regular intervals. The “upleveltime90” shows difference in the 
number of frames which have the highest levels of 
randomness/noise/irregularity between ALS and non-ALS 
speakers; and the spectralVariance_sma_upleveltime50 value 
reinforces this difference. The spectralVariance_sma_linregc2 
feature suggests a higher offset of the linear contour of this 
curve (therefore differences at low frequencies, possibly similar 
to the low-frequency differences in females). 

3.3. Classification and validation 

After feature standardization (µ=0, s=1) we performed a two-
nested leave-subject-out cross validation approach using linear 
support vector machines (SVM) classifier for performance 

estimation and parameter selection, respectively. Feature 
selection was performed via univariate selection (two-sample t-
test) in the internal cross-validation procedure. The resulting 
features were used to train nine off-the-shelf classifiers 
(Decision Tree, Linear Support Vector Machine, Linear 
Discriminant Analysis, Logistic Regression, Logistic 
Regression with L1 norm, Naive_Bayes, Nearest Neighbors, 
Random Forest, Support Vector Machine with elastic net 
regularization). Classifier performance was validated via a 
leave-five-subject-out cross-validation approach, with 
classifier parameters being selected via an internal 5-fold cross-
validation. In other words, we used a nested cross-validation 
scheme to calculate classification error rates and optimal 
parameter values.  

4. Results 
Figure 2 below shows the results of the representative Linear 
SVM classifiers for males and females. The male classifier had 
a 79% accuracy rate (precision=0.78, recall=0.76) and the 
female classifier had 83% accuracy rate (precision=0.86, 
recall=0.78).

 
Figure 2: Classification performance for Linear SVM 

classifiers, using leave-five-subject-out cross validation. 
Confidence intervals at 95% are marked with black vertical 
lines. Chance probability is calculated and displayed with a 
horizontal black line. Results obtained with leave-five-subject-
out and ten-fold cross validation surpass chance probability. 

Not all features performed equally well. For males, a single 
feature could separate conditions with 79% accuracy. For 
females, the top 15 features could separate conditions with 78% 
accuracy. Figure 3 characterizes separation characteristics for 
the top male and female features. It is interesting to observe that 
the most informative feature for males is 
“audSpec_Rfilt_sma[10]_maxPos,” and the most informative 
corresponding feature for females is  
“audSpec_Rfilt_sma_de[14]_iqr1-3”. This implies RASTA 
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filtering of the audio spectrum, smoothed, in different regions 
corresponding to gender. RASTA filtering highlights changes, 
or “edges,” in the sound as part of its process. For a visual 
analog, image a picture with lines drawn around each object and 
lines highlighting shadows, color changes, etc. This filtering not 
only highlights the sonic edges, but it also suppresses spectral 
components which vary at rates different from the typical rate 
of change in speech. This result suggests that spectral changes 
in ALS and non-ALS speech are characteristically different. 

 
Fig 3: Distribution of values for most informative feature after 
age correction for female (left) and male subjects to 
discriminate patients vs. controls.  

5. Discussion 
The dataset used in this study presented challenges. The data 
did not originate from a clinical trial or contrived study, and 
therefore could not be expected to provide balanced data. This 
was seen in the difference in age between controls and patients, 
and in the unbalanced representation and distribution of patients 
across disease severity in males. We corrected the age bias via 
age correction across the features, but could not create data 
which did not exist to balance the representation of disease 
severity. The male model did not perform as well as the female 
model, probably because of this imbalance. In the future, larger 
sample sizes may help balance the training set with real data; 
otherwise artificial balancing techniques such as synthetic 
minority over-sampling technique (SMOTE) could be used. 

The data was also not collected in laboratory conditions, but 
was instead recorded in the wild, often in noisy environments. 
The noisiest data, including recordings with music, loud crowd 
noise, other speakers, and loud noise events had to be discarded 
or cleaned. In the future we hope to perform the analysis with a 
larger cohort of subjects, and hope to provide concrete advice 
and procedures for clean data collection to avoid heavy 
background noise levels. In addition, we advise the recruiting 
of control subjects which match the age profile of the patients. 
The advantage of using this kind of dataset, however, is that the 
resulting models will function on data collected in the wild, 
which is the level of robustness required for deploying mobile 
symptom tracking tools. 

The utterances in this dataset were very limited. Most of the 
utterances were one of three short sentences, or a longer 
paragraph. Although these passages were designed to elicit 
abnormal speech in patients who had dysarthria, they were not 
representative of the range of normal speech, and not all 
subjects uttered all sentences. This imbalance could also have 
introduced biases into the dataset which could have affected 
model performance. The literature reports that ALS patients 

have smaller vowel space than non-ALS patients [1], but we 
were unable to detect this in our dataset, possibly because the 
sentences were short and did not contain enough exemplary 
vowels. We suggest a wider range of scripted utterances, along 
with the elicitation of unscripted speech. 

The subjects in our dataset came from many countries and 
spoke many different native languages; many had obvious 
accents. They were all asked to read the same English sentences 
or paragraphs. Language differences could have generated 
confounding artifacts such as prosodic variation carried over 
from the native tongue, differences in vowel pronunciations and 
durations, and slower speaking rate. Slower speaking rate, 
especially, is a known result of both ALS and of speaking an 
L2 language. We purposely did not analyze speaking rate 
because of this potential confusion and instead searched for 
markers which would be accent independent.  

In spite of the dataset limitations, our linear SVM model 
performance exceeded comparable SVM models. We believe 
that system performance can be improved by using deep 
learning methods, particularly on larger datasets. 

The patient assessment procedures could also be improved. 
The most commonly-used severity assessment scale, the 
ALSFRS-R, limited our analytic options, particularly with 
respect to exploring regression. The granularity of 
measurement of speech fluency was not sufficient for our 
analytic goals; and many subjects who exhibited obvious 
dysarthria symptoms rated a “4,” the highest rating on the scale. 
These subjects were indistinguishable on paper from the 
controls or patients who did not yet exhibit discernable speech 
difficulty. Furthermore, the frequency of measurement was not 
consistent across subjects and did not support longitudinal 
analysis.  In addition, recording the onset site (bulbar or spinal) 
would be helpful to analysis given the implications on 
prognosis [27] and speech deterioration [28]. Finally, the 
patients were monitored by self-reporting answers from a 
questionnaire, and these self-reported numbers were used to 
calculate the ALSFRS-R score. Self-reporting is inherently 
biased. 

6. Conclusions 
We demonstrated successful recognition of ALS and non-ALS 
speech on a dataset collected in the wild with no special 
equipment. The resulting solution used off-the-shelf feature 
extraction (openSMILE) and classification methods (linear 
SVM) on scripted sentences designed for speech assessment 
(accuracy=83% for females and 79% for males). This end result 
was a gender-optimized solution with improved performance 
over comparable linear SVM classifiers. We found that we 
could use a small feature set size (even a single feature for 
males) for simplicity and computation efficiency. Finally, the 
result produced a data analysis process and machine model 
shown to be tolerant to in-the-wild recording conditions.  
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