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Abstract
Recent studies have investigated siamese network architec-
tures for learning invariant speech representations using same-
different side information at the word level. Here we investi-
gate systematically an often ignored component of siamese net-
works: the sampling procedure (how pairs of same vs. different
tokens are selected). We show that sampling strategies taking
into account Zipf’s Law, the distribution of speakers and the
proportions of same and different pairs of words significantly
impact the performance of the network. In particular, we show
that word frequency compression improves learning across a
large range of variations in number of training pairs. This ef-
fect does not apply to the same extent to the fully unsupervised
setting, where the pairs of same-different words are obtained
by spoken term discovery. We apply these results to pairs of
words discovered using an unsupervised algorithm and show an
improvement on state-of-the-art in unsupervised representation
learning using siamese networks.
Index Terms: language acquisition, speech recognition, sam-
pling, Zipf’s law, weakly supervised learning, unsupervised
learning, Siamese network, speech embeddings, ABX, zero re-
source speech technology

1. Introduction
Current speech and language technologies based on Deep Neu-
ral Networks (DNNs) [1] require large quantities of transcribed
data and additional linguistic resources (phonetic dictionary,
transcribed data). Yet, for many languages in the world, such
resources are not available and gathering them would be very
difficult due to a lack of stable and widespread orthography [2].

The goal of Zero-resource technologies is to build speech
and language systems in an unknown language by using only
raw speech data [3]. The Zero Resource challenges (2015 and
2017) focused on discovering invariant sub-word representa-
tions (Track 1) and audio terms (Track 2) in an unsupervised
fashion. Several teams have proposed to use terms discovered
in Track 2 to provide DNNs with pairs of same versus differ-
ent words as a form of weak or self supervision for Track 1:
correspondence auto-encoders [4, 5], siamese networks [6, 7].

This paper extends and complements the ABnet Siamese
network architecture proposed by [8, 6] for the sub-word mod-
elling task. DNN contributions typically focus on novel archi-
tectures or objective functions. Here, we study an often over-
looked component of Siamese networks: the sampling proce-
dure which chooses the set of pairs of same versus different to-

kens. To assess how each parameter contributes to the algorithm
performance, we conduct a comprehensive set of experiments
with a large range of variations in one parameter, holding con-
stant the quantity of available data and the other parameters. We
find that frequency compression of the word types has a partic-
ularly important effect. This is congruent with other frequency
compression techniques used in NLP, for instance in the com-
putation of word embeddings (word2vec [9]). Besides, Levy et
al. [10] reveals that the performance differences between word-
embedding algorithms are due more to the choice of the hyper-
parameters, than to the embedding algorithms themselves.

In this study, we first show that, using gold word-level an-
notations on the Buckeye corpus, a flattened frequency range
gives the best results on phonetic learning in a Siamese network.
Then, we show that the hyper-parameters that worked best with
gold annotations yield improvements in the zero-resource sce-
nario (unsupervised pairs) as well. Specifically, they improve
on the state-of-the-art obtained with siamese and auto-encoder
architectures.

2. Methods
We developed a new package abnet31 using the pytorch frame-
work [11]. The code is open-sourced (BSD 3-clause) and avail-
able on github, as is the code for the experiments for this paper2.

2.1. Data preparation

For the weakly-supervised study, we use 4 subsets of the Buck-
eye [12] dataset from the ZeroSpeech 2015 challenge [3] with,
respectively, 1%, 10%, 50%, and 100% of the original data (see
Table 1). The original dataset is composed of American En-
glish casual conversations recorded in the laboratory, with no
overlap, no speech noises, separated in two splits: 12 speakers
for training and 2 speakers for test. A Voice Activity Detec-
tion file indicates the onset and offset of each utterance and en-
ables to discard silence portions of each file. We use the ortho-
graphic transcription from word-level annotations to determine
same and different pairs to train the siamese networks.

In the fully unsupervised setting, we obtain pairs of same
and different words from the Track 2 baseline of the 2015 Ze-
roSpeech challenge [3]: the Spoken Term Discovery system
from [13]. We use both the original files from the baseline,
and a rerun of the algorithm with systematic variations on its

1
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2
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Duration #tokens #words #possible pairs

1% 3.0 min 1006 355 ∼ 5.105

10% 29.9 min 7189 1297 ∼ 2.107

50% 149.5 min 34912 3112 ∼ 6.108

100% 299.1 min 69543 4538 ≥ 2.109

Table 1: Statistics for the 4 Buckeye splits used for the weakly
supervised training, the duration in minutes expressed the total
amount of speech for training

similarity threshold parameter.
For the speech signal pre-processing, frames are taken ev-

ery 10ms and each one is encoded by a 40 log-energy Mel-
scale filterbank representing 25ms of speech (Hamming win-
dowed), without deltas or delta-delta coefficients. The input to
the Siamese network is a stack of 7 successive filterbank frames.
The features are mean-variance normalized per file, using the
VAD information.

2.2. ABnet

A Siamese network is a type of neural network architecture
that is used for representation learning, initially introduced for
signature verification [14]. It contains 2 subnetworks shar-
ing the same architecture and weights. In our case, to ob-
tain the training information, we use the lexicon of words to
learn an embedding of speech sounds which is more represen-
tative of the linguistic properties of the signal at the sub-word
level (phoneme structure) and invariant to non-linguistic ones
(speaker ID, channel, etc). A token t is from a specific word
type w (ex: “the”,“process” etc.) pronounced by a specific
speaker s. The input to the network during training is a pair
of stacked frames of filterbank features x1 and x2 and we use
as label y = 1({w1 = w2}). For pairs of identical words, we
realign them at the frame level using the Dynamic Time Warp-
ing (DTW) algorithm [15]. Based on the alignment paths from
the DTW algorithm, the sequences of the stacked frames are
then presented as the entries of the siamese network. Dissimilar
pairs are aligned along the shortest word, e.g. the longest word
is trimmed. With these notions of similarity, we can learn a rep-
resentation where the distance between the two outputs of the
siamese network e(x1) and e(x2) try to respect as much as pos-
sible the local constraints between x1 and x2. To do so, ABnet
is trained with the margin cosine loss function:

lγ(x1, x2, y) =

{
− cos(e(x1), e(x2)), if y = 1
max(0, cos(e(x1), e(x2))− γ), otherwise

For a clear and fair comparison between the sampling pro-
cedures we fixed the network architecture and loss function as
in [6]. The subnetwork is composed of 2 hidden layers with
500 units, with the Sigmoid as non-linearity and a final embed-
ding layer of 100 units. For regularization, we use the Batch
Normalization technique [16], with a loss margin γ = 0.5. All
the experiments are carried using the Adam training procedure
[17] and early-stopping on a held-out validation set of 30% of
spoken words. We sample the validation set in the same way as
the training set.

2.3. Sampling

The sampling strategy refers to the way pairs of tokens are fed to
the Siamese network. Sampling every possible pairs of tokens

becomes quickly intractable as the dataset grows (cf. Table 1).
There are four different possible configurations for a pair of

word tokens (t1, t2) : whether, or not, the tokens are from the
same word type, w1 = w2. and whether, or not, the tokens are
pronounced by the same speaker, s1 = s2.

Each specific word typew is characterized by the total num-
ber of occurrences nw it has been spoken in the whole corpus.
Then, is deduced the frequency of appearances fw ∝ nw, and
rw its frequency rank in the given corpus. We want to sample
a pair of word tokens, in our framework we sample indepen-
dently these 2 tokens. We define the probability to sample a
specific token word type w as a function of nw. We introduce
the function φ as the sampling compression function:

P(w) = φ(nw)∑
∀w′

φ(nw′)
(1)

When a specific word type w is selected according to these
probabilities, a token t is selected randomly from the specific
word type w. The usual strategy to select pairs to train siamese
networks is to randomly pick two tokens from the whole list
of training tokens examples [14, 18, 6]. In this framework, the
sampling function corresponds φ : n → n. Yet, there is a puz-
zling phenomenon in human language, there exists an empiri-
cal law for the distribution of words, also known as the Zipf’s
law [19]. Words types appear following a power law relation-
ship between the frequency fw and the corresponding rank rw:
a few very high-frequency types account for almost all tokens
in a natural corpus (most of them are function words such as
“the”,“a”,“it”, etc.) and there are many word types with a low
frequency of appearances (“magret”,“duck”,“hectagon”). The
frequency ft of type t scales with its corresponding rt follow-
ing a power law, with a parameter α depending on the language:

fw ∝ 1

rαw
, α ≈ 1

One main effect on the training is the oversampling of word
types with high frequency, and this is accentuated with the sam-
pling of two tokens for the siamese. These frequent, usually
monosyllabic, word types do not carry the necessary phonetic
diversity to learn an embedding robust to rarer co-articulations,
and rarer phones. To study and minimize this empirical linguis-
tic trend, we will examine 4 other possibilities for the φ function
that compress the word frequency type:

φ : n→ 2
√
n, φ : n→ 3

√
n

φ : n→ log(1 + n), φ : n→ 1

The first two options minimize the effect of the Zipf’s Law
on the frequency, but the power law is kept. The log option re-
moves the power law distribution, yet it keeps a linear weight-
ing as a function of the rank of the types. Finally with the last
configuration, the word types are sampled uniformly.

Another important variation factor in speech realizations
is the speaker identity. We expect that the learning of speech
representations to take advantage of word pairs from different
speakers, to generalize better to new ones, and improve the ABX
performance.

P s− =
#Sampled pairs pronounced by different speakers

#Sampled pairs

Given the natural statistics of the dataset, the number of
possible ”different” pairs exceeds by a large margin the num-
ber of possible ”same” pairs (∼ 1% of all token pairs for the
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Figure 1: ABX across-speaker error rates on test set with vari-
ous sampling compression functions φ for the 4 different Buck-
eye splits used for weakly supervised training. Here, the pro-
portions of pairs with different speakers P s− and with different
word types Pw− are kept fixed: P s− = 0.5, Pw− = 0.5

Buckeye-100%). The siamese loss is such that ”Same” pairs are
brought together in embedding space, and ”Different” pairs are
pulled apart. Should we reflect this statistic during the training,
or eliminate it by presenting same and different pairs equally?
We manipulate systematically the proportion of pairs from dif-
ferent word types fed to the network:

Pw− =
#Sampled pairs with non-matching word types

#Sampled pairs

2.4. Evaluation with ABX tasks

To test if the learned representations can separate phonetic cate-
gories, we use a minimal pair ABX discrimination task [20, 21].
It only requires to define a dissimilarity function d between
speech tokens, no external training algorithm is needed. We
define the ABX-discriminability of category x from category y
as the probability that A and X are further apart than B and
X when A and X are from category x and B is from cate-
gory y, according to a dissimilarity function d. Here, we focus
on phone triplet minimal pairs: sequences of 3 phonemes that
differ only in the central one (“beg”-“bag”, “api”-“ati”, etc.).
For the within-speaker task, all the phones triplets belong to the
same speaker (e.g. A = begT1 , B = bagT1 , X = bag′T1

) Fi-
nally the scores for every pair of central phones are averaged
and subtracted from 1 to yield the reported within-talker ABX
error rate. For the across-speaker task, A and B belong to the
same speaker, and X to a different one (e.g. A = begT1 , B =
bagT1 , X = bag′T2

). The scores for a given minimal pair are
first averaged across all of the pairs of speakers for which this
contrast can be made. As above, the resulting scores are aver-
aged over all contexts over all pairs of central phones and con-
verted to an error rate.

3. Results
3.1. Weakly supervised Learning

3.1.1. Sampling function φ

We first analyze the results for the sampling compression func-
tion φ Figure 1. For all training datasets, we observe a similar
pattern for the performances on both tasks: the word frequency
compression improves the learning and generalization. The re-
sult show that, compared to the raw filterbank features base-
line, all the trained ABnet networks improve the scores on the

phoneme discrimination tasks, even in the 1% scenario. Yet,
the improvement with the usual sampling scenario φ : n → n
is small in all 4 training datasets. The optimal function for the
within and across speaker task on all training configuration is
the uniform function φ : n → 1. It yields substantial improve-
ments over the raw filterbanks for ABX task across-speaker (
5.6 absolute points and 16.8% relative improvement for the
1%-Buckeye training). The addition of data for these experi-
ments improves the performance of the network, but not in a
substantial way: the improvements from 1%-Buckeye to 100%-
Buckeye, for φ : n → 1, is 1.9 absolute points and 7.9% rel-
ative. These results show that using frequency compression is
clearly beneficial, and surprisingly adding more data is still ad-
vantageous but not as much as the choice of φ. Renshaw et al.
[5], found similar results with a correspondence auto-encoder,
training with more training data did not yield improvements for
their system.

3.1.2. Proportion of pairs from different speakers P s−
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Figure 2: Average ABX error rates across-speaker with various
proportion pairs of different speakers P s−, with φ : n → 1 and
Pw− = 0.5.

We now look at the effect on the ABX performances of the
proportion of pairs of words pronounced by two different speak-
ers Figure 2. We start from our best sampling function config-
uration so far φ : n → 1. We report on the graph only the
two extreme training settings. The variations for the 4 different
training splits are similar, and still witness a positive effect with
additional data on the siamese network performances. Counter-
intuitively, the performances on the ABX tasks does not take
advantage of pairs from different speakers. It even shows a ten-
dency to increase the ABX error rate: for the 100%-Buckeye
we witness an augmentation of the ABX error-rate (2.9 points
and 11.6% relative) between P s− = 0 and P s− = 1. One of our
hypothesis on this surprising effect, might be the poor perfor-
mance of the DTW alignment algorithm directly on raw filter-
banks features of tokens from 2 different speakers.

3.1.3. Proportion of pairs with different word types Pw−

We next study the influence of the proportion of pairs from dif-
ferent word types Pw− Figure 3. In all training scenarios, to
privilege either only the positive or the negative examples is not
the solution. For the different training splits, the optimal num-
ber for Pw− is either 0.7 or 0.8 in the within and across speaker
ABX task. We do not observe a symmetric influence of the
positive and negative examples, but it is necessary to keep the
same and different pairs. The results collapsed, if the siamese
network is provided only with positive labels to match: the net-
work will tend to map all speech tokens to the same vector point
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Figure 3: Average ABX error rates across-speaker with various
proportion pairs with different word types Pw− , where φ : n→
1 and P s− = 0.5

and the discriminability is at chance level.

3.2. Applications to fully unsupervised setting

3.2.1. ZeroSpeech 2015 challenge

Now, we transfer the findings about sampling from the weakly
supervised setting, to the fully unsupervised setting. We report
in Table 2 our results for the two ZeroSpeech 2015[3] corpus:
the same subset of the Buckeye Corpus as earlier and a subset of
the NCHLT corpus of Xitsonga [22]. To train our siamese net-
works, we use as [6], the top-down information from the base-
line for the Track 2 (Spoken Term Discovery) of the ZeroSpeech
2015 challenge from [13]. The resulting clusters are not perfect,
whereas we had perfect clusters in our previous analysis.

Models English Xitsonga
within across within across

baseline (MFCC) 15.6 28.1 19.1 33.8
supervised topline (HMM-GMM) 12.1 16.0 04.5 03.5

Our ABnet with Pw− = 0.7, P s− = 0, φ : n→ 1 10.4 17.2 9.4 15.2

CAE, Renshaw et al. [5] 13.5 21.1 11.9 19.3
ABnet, Thiolière et al. [6] 12.0 17.9 11.7 16.6
ScatABnet, Zeghidour et al. [7] 11.0 17 12.0 15.8
DPGMM Chen et al. [23] 10.8 16.3 9.6 17.2
DPGMM+PLP+bestLDA+DPGMM Heck et al. [24] 10.6 16.0 8.0 12.6

Table 2: ABX discriminability results for the ZeroSpeech2015
datasets. The best error rates for each conditions for siamese
architectures are in bold. The best error rates for each condi-
tions overall are underlined.

In Thiolière et al. [6] the sampling is done with : Pw− =
P s− = 0.5, and φ = n → n. This gives us a baseline to
compare our sampling method improvements with our own im-
plementation of siamese networks.

First, the “discovered” clusters – obtained from spoken
term discovery system – don’t follow the Zipf’s law like the
gold clusters. This difference of distributions diminishes the
impact of the sampling compression function φ.

We matched state-of-the-art for this challenge only on the
ABX task within-speaker for the Buckeye, otherwise the modi-
fied DPGMM algorithm proposed by Heck et al. stays the best
submissions for the 2015 ZeroSpeech challenge.

3.2.2. Spoken Term discovery - DTW-threshold δ

Finally, we study the influence of the DTW-threshold δ used in
the spoken discovery system on the phonetic discriminability
of siamese networks. We start again from our best finding from
weakly supervised learning. The clusters found by the Jansen et

al. [13] system are very sensitive to this parameter with a trade-
off between the Coverage and the Normalized Edit Distance
(NED) introduced by [25].

δ #clusters NED Coverage ABX across

0.82 27,770 0.792 0.541 18.2
0.83 27,758 0.792 0.541 18.1
0.84 27,600 0.789 0.541 18.4
0.85 26,466 0.76 0.54 18.4
0.86 22,627 0.711 0.527 18.2
0.87 16,108 0.569 0.485 18.2
0.88 9,853 0.442 0.394 17.7
0.89 5,481 0.309 0.282 17.6
0.90 2,846 0.228 0.182 17.9
0.91 1,286 0.179 0.109 18.6
0.92 468 0.179 0.058 19.2

Table 3: Number of found clusters, NED, Coverage, ABX dis-
criminability results with our ABnet with Pw− = 0.7, P s− =
0, φ : n → 1, for the ZeroSpeech2015 Buckeye for various
DTW-thresholds δ in the Jansen et al. [13] STD system. The
best results for each metric are in bold.

We find that ABnet is getting good results across the various
outputs of the STD system shown in Table 3 and improves over
the filterbanks results in all cases. Obtaining more data with
the STD system involves a loss in words quality. In contrast
with the weakly supervised setting, there is an optimal trade-
off between the amount and quality of discovered words for the
sub-word modelling task with siamese networks.

4. Conclusions and Future work
We presented a systematic study of the sampling component
in siamese networks. In the weakly-supervised setting, we
established that the word frequency compression had an im-
portant impact on the discriminability performances. We also
found that optimal proportions of pairs with different types and
speakers are not the ones usually used in siamese networks.
We transferred the best parameters to the unsupervised setting
to compare our results to the 2015 Zero Resource challenge
submissions. It lead to improvements over the previous neu-
ral networks architectures, yet the Gaussian mixture methods
(DPGMM) remain the state-of-the-art in the phonetic discrim-
inability task. In the future, we will study in the same system-
atic way the influence of sampling in the fully unsupervised set-
ting. We will then try to leverage the better discriminability of
our representations obtained with ABnet to improve the spo-
ken term discovery, which relies on frame-level discrimination
to find pairs of similar words. Besides, power law distributions
are endemic in natural language tasks. It would be interesting
to extend this study to other tasks (for instance, language mod-
eling).
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