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Abstract
Traditional speech enhancement systems reduce noise by modi-
fying the noisy signal, which suffer from two problems: under-
suppression of noise and over-suppression of speech. As an
alternative, in this paper, we use the recently introduced concate-
native resynthesis approach where we replace the noisy speech
with its clean resynthesis. The output of such a system can pro-
duce speech that is both noise-free and high quality. This paper
generalizes our previous small-vocabulary system to large vocab-
ulary. To do so, we employ efficient decoding techniques using
fast approximate nearest neighbor (ANN) algorithms. Firstly,
we apply ANN techniques on the original small vocabulary task
and get 5× speedup. We then apply the techniques to the con-
struction of a large vocabulary concatenative resynthesis system
and scale the system up to 12× larger dictionary. We perform
listening tests with five participants to measure subjective quality
and intelligibility of the output speech.

1. Introduction
Environmental noise is one of the biggest problems for speech
processing systems. Traditional noise suppression algorithms
modify the noisy signal to make it more like the original sig-
nal. In doing so, they also inevitably reduce the quality of the
speech [1]. Using the recently proposed concatenative resyn-
thesis approach [2, 3], we instead resynthesize the clean signal
using clean speech segments to replace noisy segments. The
resynthesized signal should be both high quality and noise free.
Such a system works very well for small vocabulary tasks in both
removing noise and increasing quality of distorted signals [2].

The core of such a system is a similarity network that can
predict a similarity score between a clean and noisy segment
of audio. Given a noisy segment and a dictionary of clean seg-
ments, we can replace the noisy segment with most similar clean
dictionary segment. But in order to improve the quality of the
resyntheses further, we utilize a transition affinity to encourage
smoother transitions between chunks. The optimal resynthesis
is thus found using the Viterbi algorithm to balance similar-
ity between clean and noisy chunks and compatibility between
consecutive clean chunks.

Our previous work [4] proposed a model configuration that
embeds the clean and noisy speech into a shared low-dimensional
space where matching clean and noisy chunks have similar em-
beddings and non-matching pairs have dissimilar embeddings.
This configuration allows the clean speech to be processed of-
fline so only the noisy speech needs to be processed at runtime.
While faster, the time to identify an appropriate clean segment is
still linear in the size of the dictionary.

In the current work, we thus propose to make this time sub-
linear by using approximate nearest neighbor algorithms in the
decoding process to efficiently identify candidate clean segments
for each noisy segment in this learned low-dimensional embed-

Figure 1: Twin networks embed chunks of clean and noisy audio
into a shared low dimensional space allowing fast search.

ding space. In addition, we use ANN techniques to accelerate
the computation of the affinity transition matrix. These two
changes allow the system to be scaled to large vocabulary tasks.
We experiment here on a new large noisy dataset by mixing
audiobooks from the Blizzard 2013 speech synthesis challenge
[5] with environmental noise from the CHiME-3 challenge [6].

Using these ANN techniques, we first show a 5× (40 s vs
8 s) speedup compared to the brute force approach in a small
vocabulary dataset. The time to construct the transition matrix
also reduces by a factor of 40× (1808 s vs 45 s). We then scale
the system using different dictionary sizes (N ) up to 746k (12×
larger dictionary) and measure intelligibility and quality against
two comparison models.

2. Technical Description
Noisy and clean utterances are divided into temporally over-
lapped “chunks” of duration 192 ms. We assume that each noisy
chunk is constructed by adding noise to one clean chunk. A
clean dictionary is built from all of the clean speech chunks
{xi}Ni=1. We build noisy observation sets from noisy chunks
{zj}Mj=1. Using the similarity network, we compute a similarity
matrix between clean and noisy chunks (SN×M ). In addition,
We build a transition affinity matrix between clean dictionary
chunks (TN×N ). The similarity matrix and transition matrix are
used to find an optimal resynthesis.

2.1. Similarity Network

The similarity network predicts a similarity score (between 0
and 1) between a clean and noisy chunk. We use twin networks
[4] to separately map a clean and noisy chunk into a shared low-
dimensional embedding space where matching chunks are close
to each other. Then cosine similarity between low-dimensional
embeddings is used as a similarity score (Figure 1). Twin net-
works have separate identical sub-networks for processing clean
and noisy chunks. The subnetworks do not share weights and
this allows them to process clean and noisy speech segments
differently. The twin architecture allows the system to process
the clean dictionary only once and store the embeddings. At
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runtime it only needs to process the noisy observed chunks
through the noisy network. The twin networks are trained with
the contrastive loss according to [7].

L(y, ŷ) = (1− y)1
2
ŷ2 + y

1

2
{max(0,m− ŷ)}2 (1)

where ŷ is the predicted similarity score, y is desired similarity
score, and m is a margin parameter.

2.2. Efficient Decoding

The brute force approach for decoding is to compute the full
similarity matrix, SN×M , between all pairs of clean and noisy
chunks and then search for best path using the Viterbi algorithm.
Since this matrix is generally sparse, we use fast ANN algo-
rithms to compute an approximate version of SN×M in much
less time. Several efficient libraries exist for finding approximate
nearest neighbors, including ANNOY [8] and NMSLib [9]. AN-
NOY builds a forest of random projection trees to index the data
and searches all trees in parallel. NMSLib implements several
algorithms, of which we use hierarchical navigable small world
(HNSW) graphs. This approach creates a graph with small-world
structure (where it is possible to travel between most points in a
small number of hops) connecting indexed points and then uses
a greedy search from random initialization points to search it.
We compare these two ANN algorithms against each other and
against brute-force computation.

2.3. Approximating transition affinities

The transition affinity matrix T (i, j)Ni,j=1 is defined as the prob-
ability of transitioning from dictionary element xi to dictionary
element xj . The affinity is currently computed based on acoustic
features only. We calculate the euclidean distance, dτ , between
the log mel spectrogram of the last τ frames of xi and first τ
frames of xj as the affinity,

T (i, j) =
exp( 1

γ
dτ (xi, xj))∑

j′ exp(
1
γ
dτ (xi, xj′))

(2)

where γ controls the mapping of distances to affinities and was
tuned on development data.

Computing this matrix is very expensive (quadratic in N )
and generally results in a very sparse matrix. Storing the whole
transition matrix is not feasible, even for small vocabulary tasks.
On one such task, with a 61k-element dictionary, we have had
success only storing the largest 107 entries, which is 0.28%
of the full matrix. For large vocabularies, even computing the
whole matrix is not feasible. Instead, we use ANN methods
to find many of the non-zero entries in this matrix, specifically,
the k most compatible transitions for each chunk. We explore
different configurations of ANN algorithms and measure their
trade-off between recall and speed.

Given a noisy speech chunk zj , the concatenative resynthesis
system identifies a matching clean chunk xi from the dictionary.
To evaluate the quality of the mapping, z → x, we compute the
accuracy of the frame-level phonetic transcriptions of x to z:

af (z, x) =
1

F

F∑

k=1

δ(p
(z)
k , p

(x)
k ) (3)

where pk is the phonetic label of the kth frame in a signal.
Thus, af considers the frame-wise phonetic correspondence of
the input and output chunks. We consider af as our objective
accuracy metric.
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Figure 2: (a) Recall versus time to compute a 500 × 61k similar-
ity matrix using ANN. Brute-force computation takes 670 ms. (b)
Recall versus time to build a 61k × 61k transition matrix using
ANNOY. Brute force computation time is 1808.3 s.

3. Small-vocabulary experiments
We first experiment with efficient decoding and approximate
transition affinities on the small-vocabulary CHiME-2 Track 1
(GRID speech) dataset [10]. This enables us to directly measure
the efficacy of both ANN algorithms on a task where brute force
solutions are still possible.

This small dataset contains read speech simulated in a living
room environment. Noises are mainly the speech of women and
children, music, and various household activities. We train and
test on different utterances with the same speaker (speaker 3,
male), using 490 utterances for training and 10 utterances for
testing. We calculate log mel spectrograms and extract 11 frame
chunks that overlap with their neighbors by 10 frames. Each
chunk contains 192 ms of audio. For resynthesis, we build the
clean dictionary using 490 clean utterances, giving us a total of
60,801 clean chunks (N ≈ 61k).

3.1. Efficient decoding using ANN

First, we compare efficient decoding techniques using ANN
against brute force. We use two ANN algorithms: NMSLib
and ANNOY. For each noisy chunk we retrieve the top k clean
dictionary chunks and by varying k we can vary the sparsity of
the similarity matrix (S).

For ANN algorithms, there is a trade-off between recall and
computation time. It is possible to improve recall performance
at the cost of higher computation time. Figure 2 shows this
recall-computation trade-off for ANN algorithms for a random
set of 500 noisy chunks in the shared embedding space. Using
NMSLib gives nearly perfect recall in very little computation-
time (∼ 15 ms) over different k (in the figure, we show the
highest k = 400). Hence, the computation is 44× (670 ms
vs 15 ms) faster than brute force. Although we must note that
NMSLib needs to be tuned for good results. ANNOY can achieve
good recall at the expense of considerable computation-time, but
it is easier to configure and use than NMSLib.

3.2. Approximating the transition matrix

Next, we compare the ANN approximation of the transition
matrix with brute force. The brute force approach takes 1808.3 s
to build the matrix for N = 61k and we store the largest 107

entries. We use ANNOY to retrieve top k dictionary chunks for
each noisy chunk. Hence, the building time becomes linear in
dictionary size compared to quadratic in brute force. Due to a
bug in NMSLib we were unable to use NMSLib here. Figure 2
shows the recall-computation time trade-off for different values
of k. At a recall of 97%, it takes 45 seconds to build the transition
matrix for k = 100, which gives a 40× speedup over brute force.
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Table 1: Effect of sparsity in similarity matrix on accuracy and
per-file denoising time for small dictionary (size 61k) task

Method k Acc (%) Time (s)

Brute force 64.4 40.85

trans+dec 100 58.3 8.63
trans+dec 200 59.8 8.71
trans+dec 300 60.9 8.27
trans+dec 400 64.6 8.74
trans+dec 500 63.4 8.46
trans+dec 700 61.6 7.95

3.3. Denoising

After tuning ANN for both efficient decoding and transition ma-
trix computation, we measure their effect on objective accuracy
and denoising time of the system. We expect to achieve faster de-
noising with comparable accuracy to brute force. The transition
matrix is built with ANN with k = 100.

Table 1 shows the average resynthesis time and accuracy
for different choices of k. on an average, taken over 10 files,
processing time for 2 s of speech is 8.7 s. This is 5× speedup
compared to brute force (40.8 s). The average accuracy of
the resynthesized signals increases with k. At k = 400, it is
interesting to note that the accuracy is similar to that of the brute
force approach. Hence we can build fast concat systems with
comparable accuracy for this small-vocabulary task.

4. Large-vocabulary experiments
In the second experiment, we use efficient decoding and ap-
proximate transition affinities to scale the system to large vo-
cabularies. We conduct experiments on a new large vocabulary
single-channel noisy speech dataset. The dataset is created from
existing speech and noise datasets but unlike other speech en-
hancement datasets, ours uses a large amount of speech from a
single speaker. We use the audio book narration speech from the
2013 Blizzard Challenge [5]. This dataset consists of approxi-
mately 50 audio books read by a single narrator, approximately
300 hours of speech. The speech is compressed using the MP3
codec at bit rates between 64 kbps and 128 kbps including fre-
quencies up to 22 kHz. Preliminary listening tests on files at
each bit rate showed that they all achieved high speech quality.
Each audio book is broken into a separate MP3 file per chapter,
with each chapter being 10-15 minutes long. Though there is no
accompanying text for the books, many of them are available
from Project Gutenberg. After obtaining the texts from Project
Gutenberg, we segmented them into chapters corresponding to
the audio files in a semi-manual way and used the Gentle forced
alignment tool [11] to align the text with the recordings. The
current experiments use the audio book narration of Sense and
Sensibility by Jane Austin.

The noise comes from the CHiME-3 dataset [6], which
consists of seven hours of 6-channel recordings. The noises are
recorded in four environments: bus, café, pedestrian area, and
street. We treat each of the six channels as a separate noise
recording. For each audio book chapter, a random segment of
a random environmental noise is selected and mixed using a
constant gain of 0.95. The average signal-to-noise ratio (SNR)
of the resulting noisy files is 3 dB, with a maximum SNR of
9 dB and a minimum of -4 dB.

Sense and Sensibility has 50 chapters and we use 40 for
training/dictionary building and the other 10 for testing. Using 40

Table 2: Ranking performance test

Euclidean Concat

Precision-at-1 (higher better) 12.6% 82.6%
Avg rank of correct chunk (lower better) 2522 10
Number of dictionary chunks 7972 7972

chapters results in 2,306,996 clean chunks. We select 1,000,000
matching clean-noisy pairs and 1,000,000 non-matching clean-
noisy pairs, making a total training set of 2,000,000 pairs. To
select representative test utterances, we searched for small to
medium sentences or smaller parts of longer sentences from the
test set that consist of words occurring more than 40 times in the
training set. We use 62 of these sentences to test, each of which
is 4–11 words long with a duration of 2–4 seconds.

We compare the performance of the network directly by
measuring their ranking performance on clean dictionary ele-
ments when the correct element is present. This approach allows
us to directly quantify the performance of the system.

4.1. Ranking Test

We use the selected 62 test sentences and build a dictionary
where for each noisy speech chunk there is exactly one matching
clean chunk. We then randomly select 500 noisy chunks from the
test sentences to evaluate. The exact matching clean chunk serves
as our “ground truth”. The baseline is the Euclidean distance
between the log mel spectrum of clean and noisy chunks. We
predict the similarity of all of clean speech dictionary elements
for each noisy input and rank the clean chunks by their similarity.
We measure the average precision-at-1, i.e., the percentage of
queries where the top-ranked dictionary element is the actual
matching clean element (higher better). We also measure the
average rank (lower better) of the correct dictionary chunk for
each model. Table 2 shows the ranking performance results.

The euclidean baseline gives 12.6% precision-at-1 and the
average rank of the correct chunk is 2522 out of 7962. The
precision-at-1 for our system is 82.6% with average rank of
correct chunk at 10.

4.2. Denoising using increasing dictionary size

Next, we test the scalability of the system by increasing the dic-
tionary sizeN to 746k and measuring the objective accuracy and
denoising time, shown in Table 3. The system is more scalable if
the denoising time is faster while objective accuracy is compara-
ble. We select 8 test noisy sentences at random for denoising. To
vary the dictionary size, we build two types of dictionaries. In
the first type, we select small audio segments from the training
set containing the words in the test set. We control the number
of occurrence (n) of such words and change N , these are named
Word〈n〉. In the second type, we build a dictionary from a num-
ber of audio book chapters (m) directly, they are named Chp〈m〉.
Although, there is no guarantee that the Chp〈m〉 dictionaries
will have possible matching clean chunks for our test set, we
can still measure the performance of the system. For large N ,
we first use the transition approximation only, so we expect to
see higher denoising time, but also higher accuracy. Next, we
apply both approximate transition and approximate similarity to
decrease the denoising time.

For 8 speech files, each 2-4 s long, it is found that using
trans approximation only average denoising time per file is high
( 14 mins) for the largest dictionary. On the other hand, by ap-
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Table 3: Effect of large dictionary size (N ) on per-frame pho-
netic accuracy (Acc) and denoising time averaged over 8 files
(Time). Using approximate transition (Trans) only and both
approx transition and similarity (Trans+Sim)

Trans Trans+Sim
N Dict Acc (%) Time (s) Acc (%) Time (s)

49k Word10 45.9 11.0 42.8 7.8
178k Chp4 48.9 79.3 48.5 15.5
186k Word25 52.9 53.3 53.0 16.1
277k Word40 50.3 103.7 53.1 39.1
475k Chp10 50.9 403.8 49.7 36.6
746k Chp15 51.0 837.6 50.7 75.0

proximating the transition and similarity matrices, the processing
time reduces significantly to 75.04 seconds with minimal loss
of frame-wise accuracy (speedup = 837.6/75 ≈ 11×). Hence,
we were able to scale the dictionary up to 746k with denoising
time of 75.04 s.

4.3. Listening Test

Finally, to evaluate subjective quality and intelligibility of the
complete system, we perform listening tests. We resynthesize
the clean speech from noisy test sentences using the Word25
dictionary and measure the subjective quality and intelligibility
of the outputs compared with those of two models. One model
predicts the ideal ratio mask from the log mel spectrum of the
noisy speech as a classification task (Classification). The second
one predicts the log mel spectrum of the clean speech from
the noisy speech (Regression). These two comparison models
were trained using same data as our concatenative resynthesis
system (Concat). In total there are five versions of the test files,
the original clean speech (Clean), the noisy mixture (Noisy),
Concat, Classification, and Regression. There are 8 files from
each of these systems, making a total of 40 files. Five listeners
participated in both intelligibility and quality tests.

The speech quality test compared these systems under a Mul-
tiple Stimuli with Hidden Reference and Anchor (MUSHRA)
paradigm [12]. For each mixture, listeners were first presented
with the reference clean and noisy speech and then with the
output of the systems. The systems are unlabeled and presented
in a random order. Listeners were asked to rate each mixture in
terms of speech quality, noise suppression, and overall quality
each on a scale from 0 (poor) to 100 (excellent). Figure 4 shows
the results of the speech quality test for each system, averaged
across files and listeners. All three quality measures are highest
for both the clean speech reference and the hidden clean speech.
Speech quality is also very high for the noisy speech. Of the en-
hancement systems, Concat has better speech, noise suppression
and overall quality than Classification and Regression.

For the intelligibility test, participants listened to all 40 files
in different random orders. Subjects were given a copy of the
possible vocabulary and asked to transcribe the sentences as best
they could, noting that they did not necessarily have to adhere to
the vocabulary. Figure 3 shows the results of the intelligibility
test for each system averaged over all files and participants.
Speech intelligibility for both clean and noisy utterances is very
high. Intelligibility is worst for Concat and best for Classification.
These results show that the large vocabulary Concat system
achieves better quality with slightly lower intelligibility than
the baseline systems. They also show that the system achieves
comparable quality and intelligibility to earlier listening tests on
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Figure 3: Large vocabulary intelligibility test results showing
the average percentage of 62 test words correctly identified per
system. Error bars show 95% confidence intervals.
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Figure 4: Large vocabulary MUSHRA quality evaluation listen-
ing test results showing speech quality, noise suppression quality
and overall quality judgments for each system.

small vocabulary tasks [2], but with better runtime performance.

5. Conclusions
In this work, we introduce two ways to increase the efficiency
of concatenative resyntheses systems using approximate nearest
neighbor methods. In a small vocabulary system, we show
a speedup of 40× in transition matrix computation time and
5× in denoising time. The system is thus scalable to large
dictionaries and we show that using a 12× larger dictionary, we
can achieve a speedup of 11× in resynthesis. With 8 files, each
2-4 s long, we have reduced the processing time considerably,
from 14 minutes to 75 s per file. Finally, We perform listening
tests to show that the large dictionary system has similar output
quality and intelligibility to the small dictionary system. Future
work will improve the phonetic accuracy of the large vocabulary
system using more flexible training signals based on clean speech
similarity, as opposed to the exact match criteria used here [13].
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