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Abstract
This paper describes the details of the ETS submission to the
2018 Spoken CALL Shared Task. We employed a system us-
ing word and character n-gram features in a random forest ma-
chine learning framework based on the system that achieved the
second-highest score in the text processing track of the 2017
Spoken CALL Shared Task. This system was augmented with
additional features based on comparing the learner’s responses
to language models trained on text written by both native En-
glish speakers and L1-German English learners. In addition,
we developed a set of sequence-to-label models using bidirec-
tional LSTM-RNNs with an attention layer. The RNN model
predictions were combined with the other feature sets using
feature-level and score-level fusion approaches resulting in a
best-performing system that achieved a D score of 7.397 on the
test set (ranking 5th out of 12 submissions to the text processing
track of the Shared Task). Subsequent experiments resulted in
higher D scores when the model parameters were optimized for
D score instead of F-score, and the paper presents an error anal-
ysis of these models in an attempt to determine which metric is
more appropriate for evaluating spoken CALL systems.
Index Terms: Spoken CALL Shared Task, automated content
scoring, D score

1. Introduction
Many studies from the field of applied linguistics have demon-
strated the effectiveness of corrective feedback provided to lan-
guage learners by instructors in a classroom environment, e.g.,
[1, 2, 3, 4]. Recently, several Computer Assisted Language
Learning (CALL) systems have been developed in an attempt
to provide language learners with opportunities to practice their
speaking skills and receive automated feedback when an in-
structor is not present. While the automated feedback provided
by these systems is typically restricted to pronunciation quality,
some speech-based CALL systems also attempt to provide au-
tomated grammar feedback (e.g., [5, 6, 7, 8, 9, 10, 11]). Since
this field of research is relatively new, and since few shared
resources exist for comparing various error detection method-
ologies on a common data set, a shared task for spoken CALL
was held at the Workshop on Speech and Language Technology
in Education at Interspeech 2017. In this shared task, spoken
English responses produced by adolescent native speakers of
German while using a CALL application were released to the
community along with annotations about the grammatical and
semantic correctness of each response that were used by the
shared task participants to train models for predicting whether
the responses are erroneous or not; the results of this shared task

are presented in [12]. Based on the success of this shared task,
the organizers released a new set of data from the same CALL
application and organized a second edition of the shared task at
Interspeech 2018.1 This paper describes the system that ETS
developed to participate in this shared task.

Our submission to the 2017 Spoken CALL Shared Task ex-
plored the use of a pre-existing automated content scoring sys-
tem that was developed at ETS augmented with additional fea-
tures related to grammar and content. The automated content
scoring system has been applied to score content in a wide va-
riety of tasks, including short answer writing tasks for the do-
mains of elementary and secondary schools in areas such as sci-
ence, English language arts, and math [13, 14], longer writing
tasks from a standardized assessment for music teachers [15],
and speaking tasks in the context of a standardized assessment
of English speaking proficiency [16]. The submission based
on that system finished 2nd out of 15 submissions in the text
processing task for the 2017 Spoken CALL Shared Task; fur-
ther details about the design of the system and analyses of its
performance are presented in [17]. For the 2018 Spoken CALL
Shared Task, we started with the feature sets from the 2017 sub-
mission and explored additional feature sets based on an RNN
model and language models trained on essays written by native
and non-native speakers of English.

2. Data and Features
2.1. Data

The labels for the training data set released for the 2018 Spoken
CALL Shared Task were obtained by first scoring them with
four automated systems from the 2017 Spoken CALL Shared
Task and subsequently obtaining up to three independent hu-
man judgments [18]. The 6,698 responses were divided into the
following three categories with descending reliability based on
the agreement statistics among the scores that were obtained:
A (5,526 responses), B (873 responses) and C (299 responses).
For our experiments, we combined the responses from all three
categories together. In addition to this training set, the organiz-
ers also allowed the data that was released for the 2017 Spoken
CALL Shared Task to be used for training. Since initial ex-
periments indicated that the performance on the 2017 test set
was lower than cross-validation performance on both the 2017
and 2018 training sets (this finding is consistent with the results
from the 2017 shared task, in which the participating teams re-

1Further details about the Spoken CALL Shared Task, Sec-
ond Edition are available here: https://regulus.unige.ch/
spokencallsharedtask_2ndedition/.
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ported substantially higher performance on the training set than
on the test set [12]), we decided not to include the 2017 test set
in the training data. Therefore, the training data consisted of
11,919 responses from the 2017 and 2018 training sets.

2.2. Features from 2017 Submission

Labeling short responses provided by a spoken CALL applica-
tion as “accept” or “reject” can be regarded as a binary clas-
sification problem. To accomplish this task, our experiments
included the following feature sets that were initially explored
in our submission to the 2017 Spoken CALL Shared Task (see
[17] for further details about how the features in these feature
sets were calculated).

• CHAR: Character n-grams for n = 2 to 5

• TOKEN: Token unigrams and bigrams

• SYN DEP: Syntactic dependencies

• LENGTH: Features based on bins for values of the log of
the number of characters in the response

• PROMPT: Prompt bias features

• WER: Similarity based on Word Error Rate between
the response and sample correct responses for the given
prompt contained in the reference grammar provided by
the challenge organizers (referenceGrammar.xml)

• BLEU: Similarity based on BLEU score between the re-
sponse and sample correct responses

• GRAMMAR: Grammatical errors detected using the
open-source LanguageTool package2

In addition, we developed two new feature sets based on an
RNN content model and language models trained on texts writ-
ten in English by both L1 German speakers and native speakers
of English; these feature sets are described in more detail in the
following sections.

2.3. Attention BLSTM-RNN Feature

A straightforward way to carry out the binary classification task
is to use a sequence-to-label function, which maps a sequence
of input feature vectors to one of the two labels (either “ac-
cept” or “reject”). Motivated by the recent demonstrated suc-
cess of deep learning technology in a variety of machine learn-
ing tasks, especially through the use of automatic feature ex-
traction and feature engineering, we investigate whether it can
reduce the effort that was required to develop the features listed
in Section 2.2. Recurrent neural networks (RNNs) configured to
process arbitrary-length input sequences have been successfully
applied to solve a wide range of machine learning problems
with sequence data. With long short-term memory (LSTM)
cells, an RNN can overcome the vanishing gradient problem
in training. A bidirectional LSTM-RNN (BLSTM-RNN) has
two directions: the forward time direction and the backward
time direction. The attention mechanism can be simply seen
as a method for making the RNN focus on information that
is of highest importance. It can significantly improve the per-
formance of sequence-to-sequence models and has been used
widely for the applications like machine translation and im-
age captioning. Adding an attention layer into an LSTM-RNN
model can be applied either to the input to the LSTM or to

2We used the language-check Python wrapper for Langauge-
Tool available from https://pypi.python.org/pypi/
language-check.

the output of the LSTM, which depends on the information re-
quired to propagate at every time step. The attention vector can
also be dimension dependent if the input time series are multi-
dimensional, i.e., one attention vector per dimension.

An attention BLSTM-RNN was con-
structed using the Keras package3 along with
keras-attention-mechanism.4 The input word
sequence was truncated to 50 tokens and converted to a 2D
tensor using 300-dimensional word embedding vectors trained
from Google News5 resulting in a 50 × 300 input tensor. A
stack of two BLSTM layers is used, and the attention layer is
added either before the first BLSTM layer or after the second
BLSTM layer. A softmax layer which contains the label “1”
as “accept” and “0” as “reject” is used as the output layer of
the BLSTM-RNN. The binary cross-entropy loss function and
the Adam optimizer using the default parameters are applied to
train the BLSTM-RNN parameters.

Parameters such as the number of layers, the number of
nodes per layer, etc. were optimized using a 10-fold cross
validation on the training set. The results of this optimiza-
tion showed that two stacked BLSTM layers with 512 nodes
each, i.e., 256 nodes per direction, achieved the best perfor-
mance in terms of prediction accuracy. Table 1 presents further
results from these cross-validation experiments indicating that
1) word embeddings initialized using pre-trained Google News
and refined in the training of the sequence-to-label function can
slightly outperform fixed embeddings; 2) an attention applied
after the second BLSTM layer achieves slightly higher accuracy
than one applied before the first BLSTM layer; 3) an attention
vector added per input dimension is almost on par with a sin-
gle vector across all input dimensions. The optimal structure
and the corresponding parameters were used in the subsequent
model for the shared task submission.

Word
Embedding

Attention
Vector

Attention
Layer Accuracy

trainable per dim. after BLSTM 88.8%
fixed per dim. after BLSTM 88.5%
fixed per dim. before BLSTM 87.9%
fixed single after BLSTM 88.4%

Table 1: BLSTM-RNN prediction accuracy with different pa-
rameter settings using cross-validation on the training set.

2.4. LM-based Features

In order to better model the grammatical and linguistic correct-
ness of the spoken responses, we used features based on lan-
guage models trained on text written in English by both L1 Ger-
man speakers (since the English learners in the Spoken CALL
Shared Task are L1 German speakers) and native speakers of
English. Using responses from a large-scale standardized as-
sessment of academic English proficiency, we trained trigram
language models using the KenLM tool [19] on essays in En-
glish that received the highest and lowest possible scores (5 and
1, respectively); Table 2 provides the number of words that were
used to train each of the four language models.

3https://keras.io
4https://github.com/philipperemy/

keras-attention-mechanism
5https://code.google.com/archive/p/word2vec
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L1
German English

Score 5 22,172,498 13,894,091
1 799,662 1,285,206

Table 2: Number of words used to train the language mod-
els from essays written in English by L1 German and English
speakers received high (5) and low (1) scores

For each spoken response in the Spoken CALL Shared Task
data set, we calculated the negative log-probability and perplex-
ity of the response for each of the language models listed above;
these values were then included in the LM feature set. The in-
tuition behind these features is that correct responses would be
expected to be closer matches to language models trained on
responses from the native English speakers and high-scoring
L1 German speakers whereas incorrect responses would be ex-
pected to be closer matches to the language model trained on
responses from low-scoring L1 German speakers.

3. Model Training
3.1. RNN-only

In order to evaluate the performance of the BLSTM-RNN
model using word embeddings on its own, one of the submis-
sions used the scores produced by the RNN model described in
Section 2.3 without any of the other features. This submission
was given the label PPP by the shared task organizers.

3.2. Feature-level Fusion

A feature-level fusion model was trained using the combina-
tion of all of the feature types described in Section 2 (includ-
ing the label posterior produced by the BLSTM-RNN model)
fused together at the feature-level. Under this approach, fea-
tures from all feature types are computed for each input and
were combined for training as opposed to using a stacking con-
figuration. Several different machine learning models were ex-
plored through cross-validation on the training set using the
scikit-learn package6 with hyper-parameter optimization
conducted using F-score as the objective metric. The Random
Forest classifier obtained the best result and was used to score
the test set for the QQQ submission.

3.3. Score-level Fusion

Since most of the feature sets included in the feature-level fu-
sion model are based on raw word tokens whereas the attention
BLSTM-RNN model was trained with word sequences repre-
sented by embeddings, the two approaches may compensate
for each other in predicting the labels jointly. Therefore, we
also explored a score-level fusion approach by using the la-
bel posterior generated from a Random Forest classifier trained
without the RNN feature and the label posterior from the atten-
tion BLSTM-RNN as the input to another classifier to predict
the final label. Again using the scikit-learn toolkit (via
the SKLL7 interface), we experimented with many classifiers
(including Support Vector Machine, Random Forest, Logistic
Regression, AdaBoost Decision Tree, Multilayer Perceptron,

6http://scikit-learn.org/
7https://github.com/EducationalTestingService/

skll

among others) to train the score-level fusion model through
cross-validation on the training set and using accuracy as the
objective metric to optimize the hyper-parameters of the clas-
sifiers. Among these models, the AdaBoost classifier achieved
the highest performance and it was subsequently used to score
the test set for the RRR submission.

4. Results
In this section, we present the results of the three systems that
we officially submitted to the 2018 Spoken CALL Shared Task
along with several additional analyses that were conducted after
the conclusion of the submission deadline.

4.1. Shared Task Submissions

Table 3 presents the following evaluation metrics for the three
official submissions on the test set (PPP, QQQ, and RRR): pre-
cision, recall, F-score, accuracy, and D score. D score was the
official metric used to rank submissions to the shared task and
is defined as the ratio of the relative corect reject rate to the rel-
ative false reject rate [20]. As Table 3 shows, the score-level
fusion system (RRR) that combined the predictions from the
Random Forest model based on all feature sets minus the RNN
feature and the attention BLSTM-RNN model using word em-
beddings achieved the highest performance using D score as the
evaluation metric. This system ranked 5th out of the 12 systems
that submitted results for the text processing task, and outper-
formed the baseline system in terms of D score, but not in terms
of accuracy and F-score.

4.2. Objective Function

As described in Sections 3.2 and 3.3, the hyper-parameters of
the fusion systems were optimized using either F-score or ac-
curacy as the objective function, since these were available as
built-in options in scikit-learn. Since the shared task
used D score as the main evaluation metric, we extended the
scikit-learn code base to enable the use of D score as an
additional objective function and then retrained the feature-level
fusion model using D score as the objective function and evalu-
ated the results on the test set after the scores were released; as
shown in Table 3 this system resulted in a substantially higher
D score of 14.317 and an F-score (0.891) that was higher than
the baseline (0.884). As shown in the table, this system had an
exceptionally high recall value (0.988), which is similar to the
recall value obtained by the highest performing system in the
shared task (0.984 from the LLL system).

We also experimented with using recall and precision as the
objective functions; however, the performance of the precision-
based system was identical to the performance of the system
optimized using F-score and the performance of the recall-based
system was not meaningful since it accepted all responses (and
therefore had an undefined D score, since it produced no false
rejects).

4.3. Feature Comparisons

In order to determine the relative contributions of the different
feature sets included in the models, we conducted an ablation
study in which separate models were trained on the training set
using each of the feature sets individually with D score as the
objective function; these results are presented in Table 4. The
results for models based on the SYN DEP and TOKEN feature
sets are not presented in the table since their D scores on the
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System Prec. Rec. F Acc. D
D score optimized 0.812 0.988 0.891 0.819 14.317

RRR (Score-level fusion) 0.842 0.920 0.880 0.823 7.397
QQQ (Feature-level fusion) 0.840 0.916 0.876 0.818 7.001

PPP (RNN-only) 0.802 0.912 0.853 0.784 5.648
Baseline 0.916 0.855 0.884 0.834 5.343

Table 3: Evaluation results for the three official submissions on the test set (PPP, QQQ, RRR) compared to the baseline and a feature-
level fusion system optimized based on the D score

test set were undefined (due to the fact that these models did
not produce any false rejects on the test set).

Feature Set D
CHAR 11.769
LENGTH 10.274
LM 8.028
WER 7.075
RNN 5.648
BLEU 5.155
PROMPT 3.321
GRAMMAR 1.32

Table 4: Results obtained on the test set with models trained
using each of the feature sets optimizing for D score

Subsequently, we conducted a step-wise ablation experi-
ment in which each of the individual feature sets were added
to the model in the order of the performance of the individual
models. These results are presented in Table 5. As the table
shows, a model that contained the CHAR, LENGTH, LM, WER,
RNN, and BLEU features resulted in the highest performance,
with a D score of 15.24.

Feature Sets D
CHAR 11.769

+ LENGTH 12.766
+ LM 11.619
+ WER 11.905
+ RNN 13.167
+ BLEU 15.24
+ PROMPT 13.761
+ GRAMMAR 14.565
+ SYN DEP 11.954
+ TOKEN 14.317

Table 5: Results obtained on the test set with models trained
based on the step-wise addition of the feature sets optimizing
for D score

5. Discussion and Conclusion
In this paper we presented the results of a system that automat-
ically accepts or rejects responses submitted to an English spo-
ken CALL application by L1 German speakers. Using a com-
bination of features targeting content and grammatical accuracy
and an attention BLSTM-RNN model based on word embed-
dings, our highest performing system achieved a D score of

7.397 on the test set of the 2018 Spoken CALL Shared Task.
Additional experiments examined the impact of using differ-
ent objective functions to optimize the hyper-parameters of the
models. These experiments demonstrated that the D score re-
sult on the test set can be improved substantially when D score
is used specifically as the objective function (in comparison to
F-score)—the system optimized using D score with all features
resulted in a D score of 14.317. A more detailed analysis of
these results demonstrates that this system accepted 913 out of
the 1000 responses in the test set (as evidenced by the high re-
call presented for this system in Table 3) and that it correctly
rejected 31.2% of responses labeled as incorrect. This system
therefore satisfied the constraint placed on submissions to the
2018 Spoken Call Shared Task: In order to prevent “gaming”
of the metric, entries are required to reject at least 25% of all
incorrect responses. However, other models that were trained
using D score as the objective function did not satisfy this 25%
threshold; for example, the model based on the CHAR feature
set with a D score of 11.769 shown in Table 4 only detected 59
out of the responses labeled as incorrect by the human annota-
tors (since the test set includes 250 responses labeled as incor-
rect, the 25% threshold is 63 responses). These results raise
questions about whether it is appropriate to use the D score
alone as the evaluation metric or whether it would be best to
combine it with other metrics to produce a more robust and
meaningful overview of the system’s performance.

In addition to the step-wise feature ablation studies pre-
sented in Section 4.3, we also conducted full ablation studies
using all combinations of feature sets with D score as the objec-
tive function. The highest performing system from these exper-
iments had an exceptionally high D score of 101.351; however,
it only rejected 60 of the test responses, and therefore would
not meet the 25% threshold (24%). In fact, the vast majority of
high-performing models from this full feature ablation study do
not meet the 25% requirement. Therefore, when the D metric is
used to evaluate spoken CALL systems, additional constraints
should be placed on the model during the training phase to en-
sure that a valid model is learned. Taking into consideration the
D metric and the 25% constraint, the best-performing model
from the ablation experiment achieves a D score of 60.174 and
it correctly rejects 27.6% of rejected responses. The shared task
organizers discuss the instability of the D score as an evalua-
tion metric further in their summary paper [18] and propose a
new metric, Dfull, which is the harmonic mean between the D
score and a version of the D score that is based on the ratio of
the relative corect accept rate to the relative false accept rate.
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