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Abstract
This work tests several classification techniques and acoustic
features and further combines them using late fusion to clas-
sify paralinguistic information for the ComParE 2018 challenge.
We use Multiple Linear Regression (MLR) with Ordinary Least
Squares (OLS) analysis to select the most informative features
for Self-Assessed Affect (SSA) sub-Challenge. We also pro-
pose to use raw-waveform convolutional neural networks (CNN)
in the context of three paralinguistic sub-challenges. By using
combined evaluation split for estimating codebook, we obtain
better representation for Bag-of-Audio-Words approach. We
preprocess the speech to vocalized segments to improve classi-
fication performance. For fusion of our leading classification
techniques, we use weighted late fusion approach applied for
confidence scores. We use two mismatched evaluation phases by
exchanging the training and development sets, and this estimates
the optimal fusion weight. Weighted late fusion provides better
performance on development sets in comparison with baseline
techniques. Raw-waveform techniques perform comparable to
the baseline.
Index Terms: fusion, feature selection, Multiple Linear Regres-
sion, raw-waveform CNN

1. Introduction
Computational paralinguistics covers various non-verbal infor-
mation channels of speech and other types of vocalizations,
and has developed rapidly over the last decade. The ComParE
2018 challenge comprises of four sub-challenges for predicting
four basic emotions from the speech of handicapped subjects
(Atypical effect), valence scores given by speakers themselves
(Self-Assessed Affect (SAA)), three types of infant vocalizations
(Crying) and three different types of heart beats (Heart Beats) [1].
The organizers of the challenge provide a baseline system com-
posed of the state-of-the-art acoustic features and commonly
used classification techniques. Feature extraction and machine
learning techniques can be reproduced via freely available, open
source tools [2,3]. It is difficult to outperform the baseline results
owing to the complex fusion techniques used. A large variety of
paralinguistic tasks are investigated in the recent years including
but not limited to speaker traits [4], identifying child directed
speech, cold and snoring identification [5], social signals, con-
flicts, emotions and autism [6].

As the paralinguistic applications tested varies from year to
year, there has always been sufficient interest in feature selec-
tion and fusion techniques. Results presented in [7] show that
combination of frame- and utterance level-analysis could signifi-
cantly improve emotion recognition performance. Multi-modal

decision level fusion is proposed in [8] for emotion recognition
in the Wild [9]. Results presented in [10–12] show that the
applied fusion methods improve the performance of the stand-
alone detectors and provide systems capable of outperforming
the baseline systems.

Feature selection for various models have been proposed
in the past. This includes feature selection in Support Vector
Machine (SVM) classifier [13] for emotion recognition, ensem-
ble feature selection in [14] for model adaptation, and recent
openSMILE [3]. Canonical correlation analysis (CCA) is em-
ployed in [15] for selecting apt features from a set of speech
features for depression recognition. Acoustic, linguistic and
psycholinguistic features are employed in [16] for learning the
personality traits from the spoken data. Various feature selection
methodologies in high-dimensional classification are presented
in [17] where, speaker likability, intelligibility and personality
traits are considered for classification. In [18], features extracted
from a deep neural network are used for robust identification of
child-directed speech, cold and snoring identification [5].

Year to year, the number of subjects/instances selected for
the challenges has increased from few hundreds to several thou-
sand. Increasing the number of acoustic features opens room
for machine learning research, in optimizing feature set and
improvement in robustness of classification techniques for high-
dimensional fixed length turn-level features. Results presented
during last ComParE challenges highlighted the importance of
feature selection in handling high-dimensional paralinguistic
datasets [19–21].

Recently, end-to-end systems are also used for classifying
paralinguistic information. It avoids the use of hand-crafted
features and allows the model-itself to learn most suitable feature
representation for the given task [5], [22]. These applications are
inspired by use of raw-waveform methods in ASR and speaker
recognition tasks. We propose a raw-waveform CNN for three of
the paralingustic sub challenges. We also compare the proposed
approach with the corresponding end-to-end baseline. As the
confidence scores are not available for the baseline system [23],
it is not possible to use it for fusion techniques.

The contribution of this paper is threefold. First, we propose
to use Voice Activity Detector (VAD) for pruning irrelevant infor-
mation located in silent segments of challenge datasets. Second,
we propose to combine splits for estimation of codebooks for
Bag-of-Audio Words approach introduced in [24]. Third, we pro-
pose a raw-waveform CNN which has a comparable performance
with the end-to-end baseline and also provide reliable confidence
scores at frame-level and turn-level for late fusion. We postulate
that combined training, development and test splits for specifi-
cation codebook representatives should improve classification
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Figure 1: Processing flow chart for Self-Assessed Affect sub-challenge.

performance.
It is important to note that, similar to previous year, the base-

line scores are obtained selectively from 23 test set evaluations
(17 for individual systems and 3 + 3 evaluations with fused sys-
tems): using n-best techniques for late fusion [1]. This makes the
test baselines hard to outperform, as the challenge participants
have a maximum of 5 submission options per sub-challenge.
All presented baseline results were obtained with majority or
confidence score based fusion. Also, results presented in Table
2 of [1] shows that in some cases we have a different optimal
parameters for similar classification techniques evaluated on the
development and test data. Hence, we decided to use late fusion
for best performing classification techniques. For fusion we
decided to use late pairwise fusion with weighted scores. Also,
we decided to simulate direct and reverse evaluation scenarios
by switching training and development sets.

2. General Framework
We present the general framework used for all the sub-challenges
in this section. We remove the silence using a suitable VAD in
the first step. Vocalized segments are used for acoustic feature
selection using Low-Level-Descriptors (LLD) and functionals.
We employed Multiple Linear regression with Ordinary Least
Squares analysis, Bag-of-Audio-Words approach [24] with code-
books estimated on the combined splits, and CNN technique
applied to raw waveforms for classification. Classification tech-
niques applied varies for each sub-challenge. We finally fuse the
scores from different best individual classifiers.

2.1. Speech Preprocessing

The preprocessing step consists of pruning irrelevant informa-
tion using a suitable Voice Activity Detector (VAD). We used a
Gaussian mixture model (GMM)-based VAD [25] which is more
effective than simple energy-based counterparts when using with
varying background noise levels. This converts the original sig-
nals to segments without silence. Finally, all non-silent segments
were concatenated.

2.2. Acoustic Feature Extraction

For extraction of acoustic features, we used the openSMILE
toolkit [26] with feature set configuration presented for Inter-
speech 2016 ComParE Challenge [27]. The same feature set
has been used in the five previous editions of the Interspeech

ComParE challenges as well. Original feature set contains 6373
static features resulting from the computation of various func-
tionals over low-level descriptor (LLD) contours [28]. 65 LLDs
and corresponding 65 delta coefficients are extracted for BoAW
representation.

2.3. Modified Bag-of-Audio Words (BoAW) approach

In this work, we decided to used slightly modified BoAW ap-
proach for our experiments. Instead of using baseline config-
uration we decided to combine training, development and test
split for better coverage of the codebook. Also, we skipped
standardization step introduced in baseline system. We also used
a concept of two codebooks: the first codebook is estimated for
the 65 LLDs extracted from the ComParE feature set and the
second codebook for the 65 deltas of these LLDs.

3. Methodology for SSA sub challenge
The dataset for Self-Assessed Affect sub-challenge comprises
four times five-minute sessions from around 150 individuals.
They had to speak spontaneously twice about a negative, and
twice about positive experiences in their life. Before and after,
the speaker reports a self-assessment of their own state of mind
(Arousal and Valence on a ten-point Likert scale). In this chal-
lenge, the task is to determine the emotion of individuals as was
assessed by themselves. We proposed to use the pipeline shown
in Figure 1 for this challenge.

The speech signals are preprocessed using VAD to select
vocalized segments. Feature extraction is performed by selecting
LLDs and functionals as mentioned in Section 2. We use two
classification techniques in this challenge; BoAW with SVM
(Section 2) and multiple linear regression with ordinary least
squares analysis.

Classification performance on the development set for
BoAW approach with applied modifications is presented in Table
1. Confidence scores obtained with modified BoAW technique
are marked as PII(xi) where xi is one of the possible classes.

3.1. Multiple Linear regression

For the selected acoustic features we implement least square
analysis and estimate Multiple Linear Regression (MLR) coeffi-
cients. 28 linear separable features, presented in Listing 1, were
selected from 6373 turn-level features for SSA sub-challenge
task. Selected features contains various spectral features.
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Classification performance on development set for MLR ap-
proach with selected features is presented in Table 1. Confidence
scores for obtained with MLR technique are marked with PI(xi)
where xi is one of possible classes.

a u d S p e c R f i l t s m a [ 2 ] p e r c e n t i l e 9 9 . 0
a u d S p e c R f i l t s m a [ 5 ] l p c 3
a u d S p e c R f i l t s m a [ 1 2 ] l p c 3
a u d S p e c R f i l t s m a [ 2 2 ] u p l e v e l t i m e 9 0
p c m f f t M a g s p e c t r a l E n t r o p y s m a l p c 4
p c m f f t M a g s p e c t r a l V a r i a n c e s m a s k e w n e s s
p c m f f t M a g s p e c t r a l K u r t o s i s s m a q u a r t i l e 1
mfcc sma [ 2 ] p c t l r a n g e 0 −1
mfcc sma [ 4 ] k u r t o s i s , mfcc sma [ 8 ] r a n g e
a u d S p e c R f i l t s m a d e [ 3 ] l p c 1
a u d S p e c R f i l t s m a d e [ 5 ] p c t l r a n g e 0 −1
a u d S p e c R f i l t s m a d e [ 1 2 ] k u r t o s i s
a u d S p e c R f i l t s m a d e [ 2 0 ] q u a r t i l e 2
mfcc sma de [ 6 ] l p c 0 , mfcc sma de [ 1 1 ] l p g a i n
mfcc sma de [ 1 4 ] maxPos
sh immerLoca l sma lpc4 , j i t t e r D D P s m a d e a m e a n
pcm RMSenergy sma s tddevRis ingS lope
a u d S p e c R f i l t s m a [ 6 ] peakMeanMeanDist
mfcc sma [ 5 ] meanPeakDis t
mfcc sma [ 1 0 ] peakMeanRel
mfcc sma [ 1 2 ] s t d d e v R i s i n g S l o p e
mfcc sma [ 1 3 ] q r egc2 , mfcc sma [ 3 ] f l a t n e s s
a u d S p e c R f i l t s m a d e [ 7 ] minRangeRel
p c m f f t M a g s p e c t r a l F l u x s m a d e p e a k R a n g e A b s

Listing 1: Selected features for Self-Assest Affect

3.2. Late fusion

Weighted late fusion is applied for merging the confidence scores
obtained with MLR and modified BoAW approaches. Equation
1 represents weighted fusion approach applied for fusion MLR
(I) and BoAW (II) approaches.

Pfusion(xi) = ωPI(xi) + (1− ω)PII(xi) ∀xi ∈ X (1)

where X is a set of all possible classes, 0 < ω < 1 . Class x̂k

with highest probability Pfusion(x̂k) is selected as recognized.

4. Raw-waveform CNN
Raw waveform methods have recently been exploited for speech
processing applications with its inherent ability to extract fea-
tures which are specific to the application. As a part of the
challenge, we propose a raw-waveform CNN for Crying, Heart-
beat and Self-assessed Assessment sub challenges and compare
it with raw-waveform methods provided as the baselines. This
is motivated by the use of raw-CNN for applications such as
automatic speech recognition [29] and voice presentation attack
detection [30].

The Crying sub challenge dataset comprises of more than
5000 vocalisations of 20 healthy infants (10 females). This is
done under a study on postnatal neuro-functional and neuro-
behavioural changes and adaptations. The task is to automati-
cally classify the three classes: (i) neutral/positive mood vocali-
sations, (ii) fussing vocalisations, and (iii) crying vocalisations.
The heart-beat sub challenge dataset consists of heart sounds
gathered from 170 (55 female, age ranges 21 – 88 years) subjects
with various ages and health conditions. There are three classes
to be recognised for the data: normal, mild, and moderate/severe
as diagnosed by physicians specialized in heart disease. The task
is to classify the sounds into: normal, mild, and moderate/severe.

The proposed network consists of two-to-three convolutional
layers depending on the application and a hidden layer with relu

Table 1: UAR [%] rates for best baseline system and our ap-
proach. Results obtained on development set for Self Assessed
Affect sub-challenge.

Case System UAR
Direct Baseline 56.7
Direct MLR 63.3

Reverse MLR 60.1
Direct BoAW(GLOB)+SVM 62.1

Reverse BoAW(GLOB)+SVM 53.3

activation function. This architecture of convolution layers fol-
lowed by a multilayer perceptron is motivated by the success on
various tasks, such as speech recognition [29, 31], presentation
attack detection [30] and speaker recognition [32]. The out-
put layer performs a softmax operation to obtain frame-based
posteriors.

We provide the architecture of Baby Crying sub challenge
for general understanding of the proposed approach. We use
400ms window length (Wlen) with a 40 ms shift (Wshift) for
making frame level decisions about the underlying classes. First
convolutional layer has 80 filters (Nfilters1) with a filter width
of 30 samples (Nseq1) and is shifted by 5 samples (Nshift1) to
have 75 such chunks over the window length. We use a max pool-
ing size of 3 (mpi, i = 1..N) for all convolutional layers(N).
Pooling is followed by non-linear activation and we choose relu
based on its applications in ASR and ASV Spoof Detection
tasks. Second convolutional layer has 60 filters (Nfilters2), fil-
ter width of 7 (Nseq2) and a filter shift of 1 (Nshift2). Hence,
the total number of samples actually considered in filtering is
7 ∗ 75 = 525. Third convolutional layer (if exists) also has the
same configurations as the second one. The parameters such
as window length, number of filters, filter width and stride are
selected based on heuristics and assumptions about the task. For
example, a very small Nseq1 and (Nshift1) in Crying task is
justified by the need of analysis at micro-level, so as to cover
at least two pitch cycles of a baby, which is typically of 1 − 2
ms. The pitch plays a very important role in their voice as their
vocal tract is not fully developed. A large Wlen captures the
contextual information and it avoids the need of recurrent units.

In the challenge paper [1], development data is used for
evaluating the top performing model and the testing is also per-
formed with the same data. This could lead to a bias towards
the development data and increase the performance gap with
the testing data. As compared to the experiments reported in
the challenge paper, we follow a different procedure to train the
proposed and baseline networks. 90% of the training examples
are used for training and rest is used for validation. Training
instances are repeated in the training set so as to have an even
distribution of instances among classes. The development data
provided is used for testing the models. As the development
data is unseen during the training, testing the model with this
data is justified. The experiments are performed with 2 LSTM
layers as it has better unweighted average recall (UAR) in the
development set [1]. The baseline model is trained for 10 epochs
and top performing model is evaluated to obtain the performance.
The CNN model is trained with an initial learning rate (LR) of
0.1. The LR is halved whenever the validation loss stagnates
between successive epochs. Training is terminated when the LR
drops below 10−5 and the final model is used for evaluation.
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5. Results
During first experiment phase, we used development data for
tuning classification parameters of MLR and modified BoAW
techniques. During the second phase, we used development data
for the estimation of late fusion weight. Afterwards, optimized
architecture was used for training and fusing models on com-
bined training and development sets. Finally, fused models were
evaluated on test data.

5.1. Evaluation of development data

We used two different evaluation setups for SSA sub-challenge:
we trained models on the training set and evaluated on the devel-
opment set (direct case), and trained models on the development
set and evaluated on the the training set (reverse case).

One could see, that proposed MLR and BoAW with global
codebooks outperformed results obtained with baseline system
on development set

Afterwards, by using technique described in Section 3.2 we
were estimating optimal ω value for late fusion of MLR and
BoAW. Results obtained with direct and reverse evaluation cases
were used. UAR as a function of ω are presented in Figure 2.

0 0.2 0.4 0.6 0.8 1

55%

60%

65%

W
direct reverse

Figure 2: UAR as a function of linear regression weight ω. Direct
case: training on training data, evaluation on development.
Reverse order - training on development set and evaluation on
training set.

As one could see from Figure 2 curves for the direct and
the reverse case have different maximum values. With ω =
0.426 we can improve classification performance for the direct
case from UARMLR = 63.3% and UARBoAW = 62.1% to
UARfusion = 67.0%. In the case of reverse case, on optimal
fusion result was obtained with ω = 0.642.

5.2. Evaluation of test data

By averaging UAR curves for the direct and the reverse case
we found that an optimal performance for fused technique can
be obtained ω = 0.63. Hence, for late fusion of MLR and
BoAW techniques trained on combined training and development
sets we used ω = 0.63. Results obtained on test sets with

Table 2: UAR [%] rates for best baseline system (Majority vote
for 3 best) and our approach with tunned fusion weight. Results
obtained of test set for Self Assessed Affect sub-challenge.

System UAR

Baseline [1] 66.0
Proposed 63.5

Table 3: Confusion Matrix for evaluation on test set for Self
Assessed Affect Sub Challenge.

System l [%] m [%] h [%]
l 21.3 58.7 20.0
m 7.4 81.6 11.0
h 0.7 11.8 87.5

proposed technique is presented in Table 2 The corresponding
confusion matrix is given in Table 3, where we observe the
highest confusion between the low (class l) and middle level
(class m) of valence. As one could see recall rates for m and
h valence classes significantly outperform UAR reported for
best baseline system. For final test evaluations we are planing to
improve the results for valence class l.

5.3. Results on raw-waveform CNN

We compare the performance of proposed approach with raw
waveform-based END2YOU network [23] for three sub chal-
lenges. In terms of UAR, proposed raw-CNN approach has a
comparable performance with baseline for Crying task, whereas
it outperforms the baseline for other two tasks, see Table 4. This
is achieved in spite of being a less complex network. For ex-

Table 4: UAR [%] rates for End2End methods trained and eval-
uated on raw-waveform. Evaluated on development sets.

System Crying Heart beat Self-Assessed

Baseline [1] 73.7 25.6 43.0
Proposed 71.1 44.8 49.2

ample, baseline system has 2, 115, 035 parameters in total as
compared to 1, 668, 539 parameters of the proposed model for
crying sub challenge. This is reflected in both training and testing
times. The LSTM layers of the baseline causes delay in training
the network and the models validation performance need not
necessarily have a convergence with respect to the epochs.

6. Conclusions and Future work
In this work, we propose to use MLR for selecting acoustic
features, and we offer to use advanced technology for BoAW
codebook creation. We showed that implementing weighted late
fusion for MLR and BoAW could significantly improve perfor-
mance on the development set. We simulated direct and reverse
evaluation cases for tuning the late fusion weight parameter for
evaluating on the test set. The preliminary results on SSA de-
velopment and test sets indicate that presented techniques are
effective in the classification of Self-Assessed Affect. We also
proposed a raw-waveform CNN for three sub-challenges. Raw-
waveform techniques perform comparable to the baseline for
Crying sub challenge and outperform the baseline results for
SSA and Heart Beats sub challenge.
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