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Abstract
This experimental study establishes the first audio-visual speech
recognition baseline for the TIMIT sentence portion of the
AVICAR dataset, a dataset recorded in a real, noisy car envi-
ronment. We use an automatic speech recognizer trained on a
larger dataset to generate an audio-only recognition baseline for
AVICAR. We utilize the forced alignment of the audio modality
of AVICAR to get training targets for the convolutional neural
network based visual front end. Based on our observation that
there is a great amount of variation between visual features of
different speakers, we apply feature space maximum likelihood
linear regression (fMMLR) based speaker adaptation to the vi-
sual features. We find that the quality of fMLLR is sensitive
to the quality of the alignment probabilities used to compute it;
experimental tests compare the quality of fMLLR trained using
audio-visual versus audio-only alignment probabilities. We re-
port the first audio-visual results for TIMIT subset of AVICAR
and show that the word error rate of the proposed audio-visual
system is significantly better than that of the audio-only system.
Index Terms: audio-visual speech recognition, neural net-
works, speaker adaptation

1. Introduction
In noisy acoustic conditions automatic speech recognition
(ASR) performance degrades. Although audio is vulnerable to
acoustic noise and causes high error rates in ASR applications,
video is more robust to the noise. Therefore, the aim of audio-
visual speech recognition (AVSR) is to exploit complementary
visual information such as mouth movements of the speaker to
improve the accuracy of ASR systems especially in noisy con-
ditions.

AVSR systems usually use sequence recognizers that are
based on ASR in their back ends. For example, in [1] and [2]
hidden Markov models (HMMs) and in [3] long-short term
memory networks are used. In order to use video modality, the
visual front-end consists of a feature extractor that computes
active shape model [4], discrete cosine transform [2, 5, 6] or
convolutional neural network (CNN) [7] based features.

This experimental study establishes the first baseline AVSR
results for the TIMIT sentence portion of the AVICAR dataset.
The paper shows how the audio component can guide learning
the complementary information in the video modality in three
ways. First, we use the forced alignments of the audio to get
training labels for feature extraction of video component which
is achieved by CNNs. Since the visual realization of speech
units varies among speakers, we apply speaker adaptation to
the visual features using feature space maximum likelihood lin-
ear regression (fMLLR) [8]. In order to estimate the adapta-

tion model, we either concatenate audio features to CNN-based
visual features or use the alignment statistics from the audio
modality to learn a transform for video in a cross-modal setting.
Finally, we use the visual unit posteriors from neural networks
trained on visual features to rescore audio-only recognition lat-
tices and to get the word recognition hypotheses.

Lipreading is a closely related task to AVSR but its aim is to
transcribe visual data without the help of audio. All lipreading
studies before 2016, like all AVSR studies, used manually la-
beled training datasets. The ‘lip reading in the wild’ (LRIW) [9]
paper proposed a new methodology whereby the visual compo-
nent is trained to match transcriptions that are time-aligned and
verified by an audio ASR. The release of large audio-only train-
ing datasets such as Fisher [10], and the development of deep
neural architectures that take advantage of such large training
datasets, has made it possible to train audio-only ASR with
an accuracy sufficient to use as reference labels for the visual
component. There are no transcribed visual speech corpora as
large as Fisher, therefore our study uses the LRIW idea of pre-
training an audio ASR on a large audio-only corpus. Unlike
LRIW, however, our visual component is trained on a corpus
with known transcriptions; the pre-trained audio ASR is used
to align the transcriptions. The audio-only ASR also generates
baseline audio-only recognition results that are much more ac-
curate than those that would be produced by an ASR trained on
just AVICAR data, and therefore, a baseline that is much harder
to beat.

The study described in [6] was perhaps the first paper to
use alignments from the audio ASR to train a part of the video
front-end, specifically, the linear discriminant transform (LDA).
The idea of using audio alignments to learn fMLLR of deep be-
lief network or deep neural network features was demonstrated
in [2] and [11] to produce word error rates substantially below
baseline, and will therefore be adopted in all of the speaker-
adapted AVSR systems in our paper. Our rescoring mecha-
nism for audio-only lattices resembles the weighted combina-
tion of log-likelihoods of audio and video modalities in the
multi-stream HMM based studies [2, 5, 7, 12].

The rest of the paper is structured as follows. The ways
in which the audio component is utilized to extract the com-
plementary information in video is described in Section 2. Ex-
perimental results are presented in Section 3 and the paper is
concluded in Section 4.

2. Audio-Visual Fusion
No previous publication has ever described AVSR for the
TIMIT-sentence portion of the AVICAR corpus. The TIMIT
sentences are drawn from an essentially unrestricted vocabulary,
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and the number of distinct triphones in this portion of the corpus
is quite large (our model uses 3897 distinct triphone states), but
the training dataset is too small (82 speakers including both the
training and test sets, with only 3.3 minutes of TIMIT-sentence
speech per speaker) to permit accurate training of such a high-
complexity acoustic model. In order to develop a competitive
state of the art AVSR using such a small training corpus, we pro-
pose to start with an audio ASR that is pre-trained using a much
larger corpus (including portions of the Librispeech corpus [13]
as well as other Intel-proprietary speech data). This pre-trained
audio-only ASR is then used as a foundation for training AVSR
on AVICAR, in three different ways:

1. State-level forced alignments are converted into visual
unit alignments and used as output targets for the CNN
used as visual feature extractor.

2. Audio features and Gaussian posteriors obtained from
the audio-only GMM-HMM system are used in fMLLR-
based [8] speaker adaptation of AV or visual features.

3. Audio lattices rescored by the viseme probabilities com-
puted from visual data are used to generate the word hy-
potheses.

The following subsections will present these points.

2.1. Visual Feature Extraction

In earlier AVSR studies, transform based features [5], shape and
appearance models are used in order to extract visual features.
With the recent advances in neural network based systems, hid-
den layer activations of the networks started to replace those
features in AVSR [7, 12]. In this study, we use CNNs as our
visual feature extractors.

In the visual front end, we first determine the mouth area
of each video frame based on the facial landmarks, then crop
the mouth area into a fixed sized window. Cropped images
are converted to grayscale. For each frame, neighboring frames
are used as context windows and fed into convolutional layers.
These layers are followed by fully connected layers and a soft-
max classification layer.

Classification targets are obtained using the audio modal-
ity. Forced alignment of the training data is used to get frame-
level phonetic labeling of the data. In our systems we used two
types of targets, visemes and clustered visual units. To deter-
mine the viseme targets we applied the widely used phoneme to
viseme mapping of [14], which has 14 visemes, to the phonetic
labels. Since there is not a general agreement on the viseme
classes [15], we also explore data-driven visual units as an al-
ternative.

In order to get the data-driven, clustered visual units, we
initialize our cluster centers as the mean visual vector associ-
ated with each phone based on the phonetic alignment of the
data. We compute the top K closest vectors using Euclidean
distance and merge two units if they are mutually within their
K-neighborhoods. After combination, we recompute the mean
vectors for the new set of clusters and continue until the desired
number of units are obtained. This method can be interpreted
as a modified version of the shared k-nearest neighbor which
does not have the update step [16]. As we start merging with
phonemes, we retain the relationship between phonemes and
the visual units. Thus, we have a phoneme to visual unit map.

Once we train CNNs using either set of targets, the visual
features are computed from the last convolutional layer of the
CNN.

Figure 1: Flowchart for early fusion

2.2. fMLLR-based Speaker Adaptation

Although the hidden layer activations of CNNs are robust to
variations such as shift, they are not invariant to speakers. Pre-
vious studies also show that lip features are highly speaker-
dependent [11]. In order to achieve speaker normalization
of the CNN-based visual features, we use the fMLLR tech-
nique which is widely used method for speaker adaptation in
audio-only ASR. In this technique, features are modified by an
affine transform where the transformation matrix is learned us-
ing the expectation-maximization algorithm [8]. Estimation of
the speaker specific transformation matrices require the Gaus-
sian posteriors from the GMM-HMM along with the feature
vectors. Depending on how the audio information is used we
have two ways of estimating transformations.

In the first method, which we call early fusion, both the fea-
tures and the Gaussian posteriors are audio-visual. As shown
in Fig. 1, MFCC features of audio (xa(t)) are concatenated to
the activations obtained from the last convolutional layer of the
CNN (xv(t)). Then, we apply mean and variance normaliza-
tion and principal component analysis (PCA). To make use of
the temporal context, we concatenate neighboring frames and
reduce the dimension by linear discriminant analysis (LDA).
If the AV features after LDA are denoted by xav(t), then the
fMLLR transformed observations ô(t) at time t can be writ-
ten using the augmented AV features ζav(t) = [xav(t); 1] as
ô(t) = Wζav(t). The i-th row of the transformation matrix W
is found by wi = (αpi + ki)G−1

i where pi, α, and ki can be
calculated as shown in [8] and

Gi =
∑

m

1

σ
(m)2
i

∑

t

γ(m)
av (t)ζav(t)ζav(t)

T . (1)

In (1), superscript T denotes transposition, σ(m)
i is the i-th diag-

onal element of the covariance matrix and γ(m)
av is the posterior

probability of the m-th Gaussian trained on AV features.
In the second method, which we call implicit fusion, visual

features are used but the Gaussian posteriors are obtained by
the audio-only GMM-HMM system. As shown in Fig. 2, au-
dio and video components are processed separately and fusion
occurs while estimating the fMLLR transformation matrices. If
PCA and LDA applied visual features are denoted by x̃v(t), and
the Gaussian posteriors obtained from the audio is denoted by
γ
(m)
a (t), estimation of Gi matrices can be written as

G′i =
∑

m

1

σ
(m)2
i

∑

t

γ(m)
a (t)ζv(t)ζv(t)

T (2)

where ζv(t) = [x̃v(t); 1].
Once we get the speaker adapted audio-visual or visual fea-

tures using these methods, we train a fully-connected network
for visual unit classification and generate visual unit posteriors
to be used in the decision fusion stage which is rescoring of the
audio-only lattices using visual unit posteriors.
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Figure 2: Flowchart for implicit fusion

Figure 3: Steps at which visual posteriors (P1 and P2) are gen-
erated, FCN denotes fully-connected network

2.3. Generating Word Hypotheses

In our AVSR system, word hypotheses are generated from
rescored audio-only recognition lattices. Rescoring is done by
adding weighted log posterior probabilities of visual units to the
log probability of the corresponding state in the lattice. We have
the correspondence between states and visemes since there is a
mapping from states to phonemes and phonemes to visemes.
In the case of clustering-based units, we start clustering based
on the phonetic identities of the frames, therefore we retain a
many-to-one mapping from phonemes to visual units and thus
from states to visual units.

The visual unit probabilities are computed from the softmax
layer of a neural network which is either a CNN trained on video
frame pixels (P1 in Fig. 3), i.e. the feature extractor network, or
a fully connected network trained on speaker adapted features
(P2 in Fig. 3).

The combination weight can be constant for all noise condi-
tions in the dataset or they can be chosen inversely proportional
to the estimated SNR levels of the audio for each recording con-
dition. SNR estimates are obtained by the average ratio of the
energy in the longest speech portion of training utterances to the
energy in the silence portion of the utterances.

3. Experimental Results and Discussion
We performed our AVSR experiments on the read TIMIT sen-
tences of AVICAR12 [17], the synchronized version of the
AVICAR corpus described in [18]. The dataset consists of digit
sequences and TIMIT sentences read in a car environment. Our
training set contains 3.48hr speech from 61 speakers and our
test set contains 1.14hr speech from 21 speakers who are dis-
tinct from the training speakers. There are five recording con-
ditions with different noise levels. They depend on the speed
of the car (35/55mph), windows being open or closed (D/U)
and idling car engine (IDL). Prior work on AVICAR has pub-
lished word error rates (WERs) only for isolated digits and digit
sequences (audio-only 19.26% [19], visual-only 62.13% [20],
and audiovisual [6]). Table 1 compares the audio-only ASR re-
sults of [19] which is trained only on the IDL condition and the

Table 1: Comparison of the audio baselines from [19] and this
study for different noise conditions in the AVICAR corpus

Avg 35U 55U 35D 55D IDL
ASR [19] 19.26 13.16 21.40 24.23 34.95 4.22
ASR
baseline

22.73 12.89 14.89 19.59 56.78 5.94

ASR baseline of this study which is trained on a larger external
dataset. Except IDL and 55D conditions, our ASR has lower
WER. Worse performance in 55D results from the fact that we
work on TIMIT sentences portion with a much larger vocabu-
lary as compared to the digit strings with limited vocabulary.
The only published audiovisual system on AVICAR [6] reports
a WER of 19.26% in telephone digit recognition rather than the
large vocabulary TIMIT section of the dataset.

Our baseline audio-only ASR system is trained on a larger
external database (Librispeech and Intel proprietary data) than
AVICAR using a deep neural network based setup in Kaldi
with 3897 triphone HMM states, and using a unigram lan-
guage model. Speaker adaptation and WER scoring are also
performed using Kaldi [21].

In the following subsections, details of the experimental
AVSR setups and the results will be presented.

3.1. Visual Unit Classification

In order to get training labels for the visual feature extractor,
we convert the state-level alignment into phonemes and then to
14 viseme classes using the map of [14] or by shared k-nearest
neighbor clustering. The number of clusters is chosen to be 22
which results in the lowest test WER in the AVSR system. The
feature extractor CNN applies rectified linear unit nonlinearity
on the results of convolutions which is then followed by local
response normalization and max pooling. The inputs of the net-
works are cropped mouth areas determined by Dlib facial land-
mark detectors [22]. To capture the mouth movements and to
get contextual information, ±5 neighboring frames are used as
additional input channels. If the kernel size, number of output
channels and the pooling factor are represented as a triplet, the
CNN layers are summarized as (5,48,2), (3,128,2), (3,192,1),
(3,192,2), (5,128,2). Since we start with fixed-sized cropped
images of size 96x48, at the last convolutional layer we have
128 channels each of size 6x3. To generate visual features for
fusion, we concatenate these activations and get 2304-d vectors.
The softmax output layer has 14 or 22 units depending on the
training label type which are visemes or clustered visual units,
respectively. The networks are trained using Tensorflow [23] to
minimize cross-entropy.

In order to adapt the 2304-d visual features to speakers,
we performed 5 iterations of expectation-maximization for fM-
LLR transform estimation. Once the speaker specific matri-
ces are estimated, adapted features are fed into fully-connected
networks. The fully-connected networks used for classifying
speaker adapted features and obtaining visual unit posteriors
for lattice rescoring have 3 hidden layers with 128, 128 and 32
nodes followed by a softmax layer where each node represents
a visual unit. Depending on the visual unit type, the number of
nodes is 14 or 22. As for the CNNs, the networks are trained to
minimize the cross-entropy measure.

Table 2 summarizes the training and test set accuracy of
the visual unit classifiers, for both the visual feature extractor
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Table 2: Frame classification accuracy (in %). Targets are ei-
ther visemes (14 classes) or clustering-based visual units (CVU,
22 classes).

Adaptation Unit Train Test
Feature
Extraction

None Viseme 52.85 47.41
None CVU 45.43 40.95

Speaker
Adaptation

Early Viseme 72.38 67.44
Early CVU 62.90 58.55
Implicit Viseme 55.38 51.09
Implicit CVU 53.54 49.55

and the fully connected network trained on the speaker adapted
features. The results are reported for the cases where we have
viseme or clustering-based visual unit (CVU) training targets.
Speaker adaptation strategies used in these results are early and
implicit speaker adaptation strategies described in Section 2.2.
In early fusion, we have audio-visual speaker adapted features
as input to the network therefore it benefits from the audio in-
formation and has the highest accuracy. Implicit fusion which
uses adapted visual features also performs better than using un-
adapted features.

3.2. Lattice Rescoring and the WER

The final WER of the AVSR systems are obtained by audio-
lattice rescoring as described in Section 2.3. Log posteriors
computed by the visual network are multiplied by a stream
weight and added to the scores in the lattice. As environment
dependent weighting scheme did not result in significant im-
provements, we used a constant weight in the reported experi-
ments. The weight is chosen in order to minimize WER on the
training data as we do not have a separate development set.

Table 3 shows the WER of the audio only baseline and
WER of the rescored lattices with visual unit posteriors ob-
tained from visual features for the test data. The first set of
results show the WER obtained by rescoring with the poste-
riors obtained from the feature extractor CNN when training
targets are visemes or clustering-based units. The second set
of results show the WER for rescoring with posteriors obtained
from speaker adapted visual features either by early or implicit
fusion for both types of visual units.

Adding visual unit posteriors from unadapted visual fea-
tures reduces the WER to 21.12 and 21.15% with viseme tar-
gets and clustering-based units, respectively, as compared to the
audio-only baseline of 22.73%. Using posteriors from speaker
adapted features reduces the WER further if we apply implicit
fusion. We achieve similar performance improvement with
clustering-based units as with the visemes. The lowest WER
20.91% is achieved when we use CVU targets and the implicit
fusion for speaker adaptation. The relative reduction in WER is
8% in this setup. This result suggests that audio alignment helps
adaptation of the video component and allows us to extract addi-
tional information from video especially at the lattice rescoring
phase. WER of the speaker adapted system with concatenated
features (early fusion) results in higher WER than unadapted
features which suggests that the fMLLR estimation with con-
catenated audio-visual information is not reliable. These obser-
vations lead to the conclusion that audio is better aligned with
the speech content and audio can guide learning complemen-
tary information from the video input. Another observation is
that data-driven clustering based units achieve comparable per-

Table 3: WER (in %) of audio and audio-visual ASR of the test
data

Adaptation Unit WER (%)
Audio None - 22.73
Feature
extractor

None Viseme 21.12
None CVU 21.15

Speaker
Adaptation

Early Viseme 21.26
Early CVU 21.18
Implicit Viseme 21.02
Implicit CVU 20.91

Table 4: Comparison of the environment dependent WER for
audio-only ASR system and the best performing AVSR system

Avg 35U 55U 35D 55D IDL
ASR 22.73 12.89 14.89 19.59 56.78 5.94
AVSR 20.91 13.03 14.78 15.77 51.98 5.79

formance to the hand-crafted and tabulated viseme classes.
If we apply a t-test with the null hypothesis that there is

no WER difference between two setups, we see that the un-
adapted AVSR, the AVSR adapted using implicit fusion, and
the AVSR adapted using early fusion with viseme targets all
perform significantly better than the audio-only baseline at the
level of p=0.001. However, the pairwise differences among the
three AVSR methods are not significant.

In Table 4, we compare the audio versus best audio-visual
WER, which is obtained by implicit fusion with CVU targets, as
a function of the acoustic noise condition. We observe that we
achieve WER reduction in almost all noise conditions and the
largest absolute improvement is in the noisiest condition 55D
which is the condition for which the use of complementary vi-
sual information is crucial.

4. Conclusions
In this study, we showed that the audio component can be used
to guide extracting information from the video component in
AVSR task in noisy car environment. First, forced state-level
alignment of the audio allows us to determine the visual unit
targets for the feature extractor CNN. Secondly, we used Gaus-
sian alignments of the audio component to estimate fMLLR
matrices for speaker adaptation of the visual features as we ob-
served that the CNN-based features are not invariant to speak-
ers. Thirdly, we used rescored audio-only recognition lattices
with visual unit posteriors to generate our word hypotheses
from our AVSR system. The visual units are either hand-crafted
visemes or data-driven clustering based units and the posteri-
ors are obtained by classifying speaker adapted visual features
into these units. Experiments on the TIMIT sentence section of
AVICAR corpus establishes AVSR baseline for the dataset and
demonstrates that the ASR performance is improved by 8% us-
ing the proposed speaker adaptation strategy. We also observed
that the largest gains are obtained for the noisiest conditions
and the use of data-driven clustering-based units achieve simi-
lar performance as the viseme based setup.
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