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Abstract
Learning intents and slot labels from user utterances is a fun-
damental step in all spoken language understanding (SLU) and
dialog systems. State-of-the-art neural network based methods,
after deployment, often suffer from performance degradation
on encountering paraphrased utterances, and out-of-vocabulary
words, rarely observed in their training set. We address this
challenging problem by introducing a novel paraphrasing based
SLU model which can be integrated with any existing SLU
model in order to improve their overall performance. We pro-
pose two new paraphrase generators using RNN and sequence-
to-sequence based neural networks, which are suitable for our
application. Our experiments on existing benchmark and in
house datasets demonstrate the robustness of our models to rare
and complex paraphrased utterances, even under adversarial test
distributions.
Index Terms: spoken language understanding, paraphrase,
neural network

1. Introduction
Voice controlled personal agents (e.g. Alexa, Google Assis-
tant, Bixby) are becoming popular due to their ability to under-
stand a wide variety of user utterances, and perform different
actions/tasks as requested by the user. Spoken language under-
standing (SLU) unit, or a semantic parser lie at its core which
enables the agent to map a user utterance to the corresponding
action desired by the user. Commercial semantic parsers rep-
resent the meaning of an utterance in terms of intent and slot
labels, which can then be mapped to an action. Intent detection
refers to the sub task of classifying an utterance into a semantic
intent label, where as slot tagging is the sub task of providing a
slot label to each word in the utterance.

Traditional approaches treat intent detection as a semantic
classification problem, and slot tagging as a sequence labeling
problem. A wide variety of algorithms have been proposed e.g.
SVMs [1], hidden Markov models [2], CRFs [3], and more re-
cently neural networks [4, 5, 6, 7]. State-of-the-art deep neu-
ral network models are trained jointly to solve the two tasks
simultaneously using recurrent and sequence-to-sequence net-
works [6, 7, 8, 9]. These models are trained end to end us-
ing labeled training data in the form of (utterance, intent label,
slot labels) tuple. However, such datasets are expensive to col-
lect, and are never exhaustive. As a result, after deployment,
these data driven models suffer from poor accuracy on utter-
ances which occur infrequently in their training data e.g. utter-
ances with out-of-vocabulary words as well as various sentential
paraphrases of the training utterances. The fundamental diffi-
culty stems due to shortcoming of these models trained using
likelihood maximization objective, that they do not generalize
well to rare examples in training data. Unfortunately, this occur
often in personal agent applications, since each individual user
has their own personal vocabulary and paraphrase preferences.

In this work, we try to tackle this problem by making the
following important observation; often these infrequent and per-
sonalized user utterances have a paraphrased utterance which is
more frequent in the training data. We try to answer the ques-
tion; instead of building a parser which perform well even for
infrequent utterances, can we simply map such utterances to an
utterance observed more frequently in the training data? Sub-
sequently, we can parse this more frequent utterance to under-
stand meaning of the original utterance. Towards this end, we
propose a new modular paraphrase driven parsing model, which
can be integrated with any existing parser, to make it more ro-
bust to out-of-vocabulary and paraphrased utterances. In our
proposed hybrid approach, we augment a parser with a para-
phrase generator, which can be used to map an infrequent ut-
terance to a more frequent paraphrased utterance. Traditional
neural paraphrase generators, trained on large paraphrase cor-
pus, however do not perform well in our setting with limited
parser training data. Therefore, we further develop novel RNN
and multi-task sequence-to-sequence based paraphrase genera-
tors, as well as techniques to build custom paraphrase datasets
for their training. In our experiments, on both benchmark and
custom in house datasets, we show that our hybrid paraphrase
driven parsers can improve both accuracy and robustness of ex-
isting state-of-the-art and commercial parsers.

2. Problem and background
In this section we formally define the intent classification
and slot labeling problem, as well as discuss existing ap-
proaches. We are provided with a labeled training dataset
T = {xi,yi, Ii}Ni=1, where xi are the utterances with words
in a vocabulary VT , yi represent the sequence of slot tags from
a slot vocabulary S, and Ii ∈ I represent the intent label of
the utterance. A SLU unit consists of a parser P which can
map an utterance x to its slot and intent labels (y, I). Figure 1
shows some example labeled utterances from benchmark ATIS
dataset.

Figure 1: Examples of labeled utterances from our paraphrase
dataset generated from ATIS training corpus.

Recurrent and sequence-to-sequence models: State-of-the-
art and commercial neural network based parsers often use a
single sequence-to-sequence and recurrent network to jointly
infer the intent and slot labels [6, 7, 8, 9]. Such encoder–decoder
based deep neural networks for sequence learning have received
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considerable attention in the recent past due to its success in a
variety of NLP tasks e.g. machine translation [10, 11], parsing
[12, 13, 14], text generation [15], paraphrasing [16] and so on.
Incorporating more encoder side information during decoding
has been shown to further improve performance of these mod-
els [17]. A basic sequence-to-sequence neural network consists
of an encoder E, and a decoder D, where each of them can be
made up of multiple stacked recurrent units (e.g. LSTM). An
input sequence x = (x1, . . . , xn) is first encoded by repeatedly
passing consecutive input symbols and previous hidden state
ht−1 through the encoder unit, t ∈ [n]. During decoding the
decoder is first initialized with the final hidden state of the en-
coder, also called the context vector c = hn. Subsequently, the
decoder hidden state h′t is updated at the decoder using the pre-
vious hidden state h′t−1 and output symbol yt−1, t ∈ [m]. The
outputs are predicted using a softmax of the projected hidden
decoder states as p(yt = y|y<t) = softmax(Woh

′
t)1y, us-

ing a projection matrix Wo. A sequence-to-sequence model is
trained by maximizing the likelihood function:

p(y1, .., ym|x1, .., xn) = Πm
t=1p(yt|y1, .., yt−1, c) (1)

3. Our models
Neural network parsers suffer from poor generalization on ex-
amples seen infrequently in their training data. In voice con-
trolled personal agents this is of major concern since individual
users often like to use their own personalized vocabulary and
paraphrased utterances, which may not be present in the train-
ing data. Instead of adapting the parser directly to infrequent
examples, we can choose to pre-process the original input to a
more frequent example in the training data. This motivates our
hybrid paraphrase driven parser for SLU discussed next.

The key idea behind our model is the following. Sup-
pose there exists a base parser Pbase, trained using a dataset T
with vocabulary VT . We augment this base parser with a para-
phrase generator Ppara trained on paraphrases from the train-
ing dataset T, or unlabeled user log dataset. Now, when the
base parser is unable to find the intent and slots of an infrequent
utterance x with sufficient confidence, it chooses to retrieve a
more frequent paraphrase of this utterance x′ using the para-
phrase generator Ppara. The base parser then proceeds to infer
the intent and slots from this paraphrased utterance x′. Since the
paraphrase generator finds a frequent paraphrase x′, the base
parser is expected to achieve a higher parsing confidence on
this new utterance. In essence the paraphrase generator acts as
a translator between the user and Pbase.
Algorithm: Our paraphrase based parsing algorithm works as
shown in Figure 2. Suppose for each utterance x, the base
parser generates a confidence score S(x) on the quality of the
inferred intent and slots. Although we would like the para-
phrase generator to paraphrase infrequent utterances, we do not
want it to negatively effect the performance of the base parser
Pbase. Therefore, only the utterances with low parsing confi-
dence S(x) < τ are sent for paraphrasing. Computing confi-
dence score of neural network output has been studied in vari-
ous applications e.g. question answering [18], semantic parsing
[19]. We compute a separate confidence score of the output in-
tent label as the probability of the label from output softmax
layer, Sintent(x) = P (I = `), ` ∈ I. Similarly, using the out-
put probability of each of the slot tags, we compute an overall
slot tagging score Sslot(x) = exp

(
1
m

∑
j logP (yj = sj)

)
,

sj ∈ S, using the normalized log likelihood of the tag sequence.
The final score is computed as the minimum of these two scores

S(x) = min{Sintent(x), Sslot(x)}.

Figure 2: Flowchart illustrating our paraphrase generator aug-
mented robust parser for intent classification and slot tagging.

We next describe the design of our paraphrase generator
Ppara.Many paraphrase generation techniques have been stud-
ied in literature [20, 21, 22, 23, 24]. However, most of these
require additional labeled paraphrase training data which may
not be always available. More importantly, these techniques do
not guarantee that the generated paraphrase x′ of x is a more
frequent example which is well understood by the base parser.
Therefore, we design two new paraphrase generation algorithms
which are most suited for our parsing application. The first al-
gorithm leverages an in–domain RNN language model to gen-
erate paraphrases using multiple word replacement. The second
algorithm employs a neural paraphrase generation technique us-
ing a multi-task sequence-to-sequence model.

3.1. RNN language model based paraphrase generator

RNN based language models have been widely used in auto-
mated speech recognition [25, 26]. We use a similar language
model as the main component in our first paraphrase generator.
Note that, we require our paraphrases to be similar to training
utterances of the base parser Pbase. Therefore we leverage the
same training data, without any labels, to train our RNN lan-
guage model. When the training dataset is small, this may not
be sufficient to obtain a well trained language model. In such
cases, we can leverage the large un-annotated user log data of
a deployed personal agent, to train our language model. Such
user log data is easily available in practical applications. We
also train simultaneously two language models; Lf in the for-
ward direction which predicts the probability of the ith word
wi as P (wi|wi−1, ..., wi−k); and Lb in the backward direction
using a reversed corpus, predicting P (wi|wi+1, ..., wi+k), for
a chosen k. Next we describe how these two language models
are used for paraphrase generation.

This model is motivated by the following observation. We
use the term context words as words having the slot label “O”
(which are non-informational), and slot words as the remain-
ing informational words. For example in Figure 1, words
{“chicago”, “san francisco”, “thursday”} are slot words, and
the remaining are context words. We observe that, often when
the base parser Pbase fail to identify the correct slot labels, it
can still identify the position of the slot words (but not their
exact labels) with sufficient confidence. Since, context words
play a major role in enabling identification of slot words, we
would like to replace context words having low parser confi-
dence with more frequent words, thereby generating a new para-
phrase. This enables the slot words to be correctly labeled using
this paraphrase. After Pbase identifies slot words in utterance x,
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we assume the remaining words are context words, and find the
average slot confidence SC(x) over these context words C. We
generate a paraphrase template T (x) = (ui, . . . , un) as fol-
lows; ui = xi, if slot probability P (yi = si) > SC(x), or
if xi is a slot word, else we replace ui = 〈?〉, a special blank
token. We then run a modified beam search algorithm using the
forward language model Lf over the template T (x), such that
the beams are constrained to generate ui = xi for non blank to-
kens, but are allowed to generate new words to replace the blank
tokens 〈?〉 in the template. However, these hard constraints tend
to reduce the normal beam search quality of the RNN. To mit-
igate this, we also perform a similar reverse beam search using
a reversed language model Lb. Finally, all generated beams are
scored by both language models, and the one having the high-
est average score is output as paraphrase x′. As an example, a
possible template T (x) for utterance 1 in Figure 1 is “〈?〉 〈?〉
a flight from chicago to san francisco on 〈?〉 thursday”; after
beam search this may produce a paraphrase “show me a flight
from chicago to san francisco on next thursday”.

3.2. Multi-task neural paraphrase generator

The paraphrases generated by RNN language model based gen-
erator can improve the slot identification performance of a
parser (shown in Section 4). However, the parser may still fail to
correctly determine intent when the input utterance x is a struc-
tural paraphrase of some training utterance. Word replacement
based paraphrase generators can never produce such structural
variation. To tackle this issue our second paraphrase generator
uses a neural multi-task sequence-to-sequence model.

Sequence-to-sequence based neural paraphrase generator
has been proposed recently by Prakash et al. [27]. However,
we observe that the basic attention based sequence-to-sequence
model do not perform well in our setting due to difficulty in
paraphrasing utterances with rare slot words. Our paraphrase
generator incorporates a single sequence encoder E, but two
separate sequence decoders D1 and D2 as shown in Figure
3. During forward pass, both the decoders are initialized
with the same encoder context vector c, and then proceeds to
decode the sequences independently. However, during training,
we constraint the second decoder D2 to generate the exact
same input utterance x, while the first decoder generates the
paraphrase x′. Such additional autoencoder constraint has also
been used in models for domain adaptation in order to obtain a
better hidden representation vector of an utterance [28]. In our
application, this better shared hidden representation encourages
the correct reproduction of slot words even at the first decoder
output. The model is trained using the joint multi-task objective
function of the sum of the individual sequence loss functions
at decoders D1, D2. In addition, as a metric to determine
the quality of the model during validation, we use a sum of
BLEU score between input x and decoder 1 output x′, and
the reconstruction accuracy of the input at decoder 2. Note
that, although decoder 2 is trained as an autoencoder, during
inference it may not always produce the same sequence as
the input. We observe that decoder 2 output is also often a
paraphrase of x, having less structural variation. Therefore,
we can use both the decoder outputs as paraphrases of x, to be
parsed by base parser Pbase.

Paraphrase dataset generation: In order to train our multi-
task neural paraphrase generator, we generate a paraphrase
dataset Tpara from the base parser training set T as follows.
First, we convert each utterance x ∈ T, to a tagged utterance

Figure 3: Figure showing the architecture and training strategy
of our multi-task sequence-to-sequence paraphrase generator.
Additional attention structure from encoder to both decoders
has been omitted in the diagram for clarity.

where the slot words have been replaced by slot labels. For
example, the tagged utterance corresponding to utterance 1 in
Figure 1 is “i need a flight from @from.city to @to.city on a
@day.name”. Now we observe that, tagged utterances having
the same intent, and identical set of slot labels are paraphrases,
since they are intended to convey the same meaning. This en-
ables us to construct a tagged paraphrase dataset Ttagged con-
sisting of tuples of distinct tagged utterances (z, z′) which have
the same intent and slot set. We then replace back the slot words
from the parent utterance of z in both z and z′, and vice versa.
This generates the paraphrased dataset Tpara having tuples of
paraphrases (x,x′). Figure 1 shows a paraphrase sample from
this dataset. In addition, we also consider all training examples
x ∈ T as identity paraphrases (x,x) and add them to Tpara.
This prevents the paraphrase generator to perform poorly, when
it encounters an utterance which did not have any other para-
phrase in T.

4. Experiments
In this section we describe our experimental results. We want
to evaluate the intent and slot tagging accuracy gains using our
paraphrase models compared to just a standalone parser.

Table 1: Examples of complex utterances in our simulated ATIS
log corpus.

Intent Utterance
atis flight show me trip that leaves tuesday on american airline going

from baltimore leaving early night arriving in pittsburgh
atis airfare give me the fares with continental leaving from long beach for

flights one way with first class arriving in tacoma

Datasets: For evaluation we use the benchmark ATIS dataset
[29], which is popularly used for evaluating parsers for spoken
language understanding. The ATIS dataset contain 5,871 utter-
ances related to airline reservation with 4,978 training and 893
test utterances. Overall it contain 17 intent labels and 79 slot la-
bels. Example utterances from this dataset is shown in Figure 1.
In order to show the accuracy gains for various sizes of training
set, we further sample training sets of such sizes, but test parser
performance on the full ATIS test set.

After deployment of an intelligent personal agent, often the
distribution of the observed utterances turn out to be signifi-
cantly different from those used in training. This is because
each individual users have their own preferred choice of para-
phrase and vocabulary, and this can change over time [28]. In
order to test the robustness of our models in such adversarial
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scenario, we generate a simulated ATIS log dataset as follows.
Starting with the original ATIS dataset, we use data recombina-
tion techniques similar to [13], to generate a variety of long and
complex utterances. Then, human linguistic experts prune any
incorrect utterance. We train all models on the original ATIS
training set, then we test their performance on a set of 1,000
ATIS log utterances for testing. Example utterances from our
dataset are shown in Table 1.

Table 2: Comparison of 10 fold average test intent accuracy
percentage of all models on ATIS corpus with increasing size of
training set, using the attention BiRNN [7] as the base parser.

Parsers Training dataset size
500 1500 2500 3500 4500

BiRNN (Liu and Lane) 87.95 93.06 94.26 96.08 96.47
Seq-to-seq paraphrase + BiRNN 88.16 93.10 94.54 96.26 96.58
RNN paraphrase + BiRNN 88.63 93.39 94.55 96.20 96.52

Table 3: Comparison of 10 fold average slot tagging F1 score
percentage of all models on ATIS corpus with increasing size of
training set, using the attention BiRNN [7] as the base parser.

Parsers Training dataset size
500 1500 2500 3500 4500

BiRNN (Liu and Lane) 79.96 88.57 90.83 91.33 92.02
Seq-to-seq paraphrase + BiRNN 79.83 88.44 90.76 91.28 91.98
RNN paraphrase + BiRNN 80.01 88.62 90.84 91.29 92.02

Baselines and parameters: We use two baseline parsers for
evaluation. First, we use the state-of-the-art Attention BiRNN
based neural network parser by Liu and Lane [7]. As a sec-
ond baseline parser we use the open source RASA parser [30],
in order to demonstrate the applicability in commercial agents
and dialog systems. We augment both these parsers with our
paraphrase generation models and compare their performance
with the former. For attention BiRNN, we use the Tensorflow
implementation made available by Liu et al. with its default pa-
rameters. We also use the RASA parser with its default settings.
Our neural models were implemented in Tensorflow. The confi-
dence threshold τ in our paraphrase models were set to 0.8. For
RASA we were unable to use RNN based paraphrase model,
since it does not return the slot tagging probabilities required
for paraphrase template construction. In paraphrase models, we
generate two best paraphrases using the paraphrase generators,
and perform a simple majority voting to predict the final intent
and slot labels.

Table 4: Comparison of 10 fold average test intent accuracy and
slot tagging F1 score percentages of the sequence-to-sequence
model on ATIS corpus with increasing size of training set, using
RASA [30] as the base parser.

Parsers Metric Training dataset size
500 1500 2500 3500

RASA Accuracy 83.70 86.81 88.33 88.44
Seq-to-seq paraphrase + RASA Accuracy 84.64 89.32 90.06 91.62

RASA F1 75.39 81.34 83.41 84.71
Seq-to-seq paraphrase + RASA F1 75.25 81.32 83.22 84.55

4.1. Results

First we compare the performance of different models on the
benchmark ATIS dataset. In Table 2 we compare the 10 fold av-
erage intent detection accuracy of our models when combined

with the attention BiRNN baseline model. We observe that both
our models improve the accuracy of the baseline parser. Fur-
ther, the accuracy gain is higher when the training set size is
small. In Table 3 we compare their corresponding average slot
tagging F1 scores. The RNN paraphrase model is observed to
improve F1 score of the baseline model, while the sequence-to-
sequence model do not. This is expected, since the RNN para-
phrase model only replaces the low confidence context words
with more frequent words, which enables the base parser to
better identify the slot labels. In contrast, the sequence-to-
sequence paraphrase model may alter the sentence structure and
slot words in its paraphrases, hence doesn’t always improve slot
tagging F1 score. We further observe that it often improves the
recall, but not its precision.

Table 5: Comparison of 10 fold average test intent accuracy
percentage of all our models on simulated ATIS log corpus with
increasing size of training set, using both attention BiRNN [7]
and RASA [30] as the base parser. The models are trained on
original ATIS dataset but tested on ATIS log corpus.

Parsers Training dataset size
500 1500 2500 3500

BiRNN (Liu and Lane) 80.49 82.22 82.71 82.65
Seq-to-seq paraphrase + BiRNN 82.41 82.51 83.54 82.87
RNN paraphrase + BiRNN 83.25 83.31 84.24 83.22

RASA 77.60 83.16 83.56 84.26
Seq-to-seq paraphrase + RASA 79.66 85.14 86.08 84.52

Next, we compare the performance of the sequence-to-
sequence paraphrase model, when used with RASA as the base
parser. RASA uses a kernel SVM classifier along with feature
selection. Hence, in general it has a worse performance than
attention BiRNN parser. However, it has the advantage of fast
training time. Table 4 compares both the intent and slot tag-
ging performance. Once again, we observe that the paraphrase
model is able to achieve high gains in intent accuracy over the
baseline RASA parser. The slot tagging performance do not
improve with this model as previously observed with attention
BiRNN parser. As mentioned before, due to the lack of slot tag-
ging confidence scores in RASA, we are unable to use our RNN
based paraphrase model with RASA.

Finally, to validate the robustness of our models in an ad-
versarial post deployment scenario, we test the performance of
our models on the simulated ATIS log corpus. Table 5 reports
the intent classification accuracy of all our models. Due to a
distribution mismatch with the ATIS training data, all models
perform worse in this dataset, as expected. However, we still
observe that, irrespective of the base parser used, our paraphrase
models achieve an improved intent detection accuracy.

5. Conclusion
Commercial parsers trained using data driven approaches, often
have poor performance after deployment, when it encounters
a variety of complex paraphrases and out-of-vocabulary words
that were unseen or infrequent in its training data. In this paper,
we propose a novel paraphrase driven parsing approach, where
during parsing such complex paraphrases are first converted to
a more familiar utterance using a paraphrase generator. We pro-
pose two new paraphrase generation techniques suitable to use
in our application. Our experimental results validate that, irre-
spective of the base parser being used, or the test data distribu-
tion being observed, our combined models are able to greatly
improve the performance of the standalone base parser.
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L. Zhang, Y. Pan, Z. Qiu, and C. Welty, “A framework for merging
and ranking of answers in deepqa,” IBM Journal of Research and
Development, vol. 56, no. 3, p. 14, 2012.

[19] L. Dong, C. Quirk, and M. Lapata, “Confidence modeling for neu-
ral semantic parsing,” arXiv preprint arXiv:1805.04604, 2018.

[20] D. Kauchak and R. Barzilay, “Paraphrasing for automatic evalua-
tion,” in Proc. of HLT–NAACL, 2006, pp. 455–462.

[21] S. Zhao, H. Wang, T. Liu, and S. Li, “Pivot approach for extracting
paraphrase patterns from bilingual corpora.” in ACL, vol. 8, 2008,
pp. 780–788.

[22] C. Quirk, C. Brockett, and W. Dolan, “Monolingual machine
translation for paraphrase generation,” in Proc. of EMNLP 2004,
2004.

[23] S. Zhao, C. Niu, M. Zhou, T. Liu, and S. Li, “Combining multi-
ple resources to improve smt-based paraphrasing model.” in ACL,
2008, pp. 1021–1029.

[24] S. Zhao, X. Lan, T. Liu, and S. Li, “Application-driven statistical
paraphrase generation,” in Proc. of the Joint Conference of the
47th ACL and the 4th IJCNLP of the AFNLP, 2009, pp. 834–842.

[25] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudan-
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