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Abstract
In this study, the performance of two enhancement algorithms
is investigated in terms of perceptual quality as well as in re-
spect to their impact on speech emotion recognition (SER). The
SER system adopted is based on the same benchmark system
provided for the AVEC Challenge 2016. The three objective
measures adopted are the speech-to-reverberation modulation
energy ratio (SRMR), the perceptual evaluation of speech qual-
ity (PESQ) and the perceptual objective listening quality assess-
ment (POLQA). Evaluations are conducted on speech files from
the RECOLA dataset, which provides spontaneous interactions
in French of 27 subjects. Clean speech files are corrupted with
different levels of background noise and reverberation. Results
show that applying enhancement prior to the SER task can im-
prove SER performance in more degraded scenarios. We also
show that quality measures can be an important asset as indica-
tor of enhancement algorithms performance towards SER, with
SRMR and POLQA providing the most reliable results.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Nowadays, existing emotion recognition systems can achieve
satisfactory performance in controlled environments [1]. In the
wild, i.e., in real world scenarios where background noise is
commonly found, performance is reduced due to the numerous
circumstances unseen during training, such as illumination, oc-
clusion, background noise and room reverberation. This has
motivated an increasing effort by the research community to-
wards providing more realistic settings (e.g. unposed data col-
lected beyond laboratory environment) so that the behaviour of
such systems can be tested in more naturalistic scenarios [2].
For instance, several Challenges have been organized over the
last few years, most notably the INTERSPEECH 2009 Emo-
tion Challenge [3], EmotiW (Emotion Recognition In The Wild
Challenge) [1], and the 2016 Audio/Visual Emotion Challenge
(AVEC) [4].

In the case of speech emotion recognition (SER), detrimen-
tal effects of environmental noise can be mitigated by the use of
speech enhancement algorithms. Most of these methods, how-
ever, are primarily designed for improving perceived quality
and intelligibility and may not be tailored for speech emotion
recognition. A handful of studies have evaluated enhancement
algorithms considering the results attained by the SER systems,
neglecting information regarding perceptual quality of the pro-
cessed speech itself. For example, in [5], a new set of wavelet
based features was adopted for classifying emotions. Two en-
hancement methods were used to suppress residual noise with
their performance evaluated only in respect to the SER task.
The authors in [6] presented a speech enhancement algorithm

based on adaptive noise cancelation for improving emotional
speech classification. A set of features based on cepstral anal-
ysis of pitch and energy contours was also introduced. In [2],
a feature enhancement method based on an autoencoder with
Long Short-Term Memory (LSTM) neural networks is pro-
posed towards robust emotion recognition from spontaneous
speech. Both additive and convolutional noise were explored
and results showed considerable gains compared to the baseline
system where no feature enhancement was applied.

The primary concern of speech enhancement for SER is
to improve speech quality and intelligibility of the corrupted
speech signal without removing important emotional cues. Al-
though the aforementioned studies have shown the benefit of
applying denoising algorithms on SER, little or no information
is given in respect to the quality of the processed speech and
how it correlates with SER performance. Such evaluation could
provide prior information about the performance of these al-
gorithms, which could be used to leverage SER performance.
With this paper, we intend to fill this gap. We investigate the
performance of two enhancement algorithms under two criteria:
considering the performance of a SER system and in respect to
the scores reported from three objective quality measures. We
also report the correlations between the estimated perceptual
qualities and the performance of the SER system under different
background noise levels. This will give us insights on whether
prior information about speech quality as well as intelligibility
can benefit SER systems, e.g., by identifying the most effec-
tive enhancement algorithm to be applied on the speech signal
before the performing SER.

The remainder of this paper is organized as follows. Section
II presents materials and methods used for the experiments per-
formed in this study. In Section III, we present the experimental
results and discussion. Section IV gives the conclusions.

2. Methods and Materials
2.1. Corrupted speech and enhancement methods

In many everyday situations, the speech signal is acquired in a
noisy environment. Hence, it is desirable to enhance it in order
to improve intelligibility and speech quality prior to performing
any speech related task. Here, two noise suppression algorithms
used to enhance SER performance are presented.

2.1.1. Single-channel spectral enhancement

The single-channel spectral enhancement method (SSE) is
based on the estimation of a real-valued spectral gain, Ĝ(ω),
which represents the amount of attenuation to be applied to the
corrupted signal to obtain the enhanced signal. This is per-
formed at each frequency component, as shown below:
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Ŝ(ω) = Ĝ(ω)X(ω) (1)

where X̂(ω) represents the corrupted signal and Ŝ(ω) is the
STFT of the estimated speech signal. The gain is attained us-
ing the minimum mean square error (MMSE) for estimating the
spectral magnitude of the clean speech signal. This requires the
computation of the power spectral density (PSD) for the clean,
noise and reverberant components. The readers are referred to
[7] for more details regarding this method.

2.1.2. Relative convolutive transfer function

In this method, the late reverberation is modeled by an STFT
domain moving average (MA) model using a relative convolu-
tive transfer function (RCTF). The RCTF coefficients are mod-
eled as a first-order Markov process and estimated using a
Kalman filter. After computing the RCTF coefficients, an es-
timate of the late reverberation PSD can be obtained which al-
low spectral enhancement to achieve dereverberation and noise
reduction. The problem can be described as

X(ω) = S(ω)H(ω) + V (ω) (2)

where S(ω) is the anechoic signal representation in the STFT
domain and H(ω) is the time-varying convolutive filter coef-
ficients, used to model the reverberant signal and V (ω) is the
additive noise. The PSD of the reverberant signal is consid-
ered time-varying while the noise PSD is assumed stationary.
The reader is referred to [8] for a detailed description on this
method.

2.2. Instrumental Quality Measures

A listening test is the most accurate method for evaluating
speech signal quality [9]. Nevertheless, it presents shortcom-
ings as the process can be time-consuming, expensive and more
importantly it cannot be done in real time [10]. To overcome
this limitation, objective perceptual quality models can be used
to attain subjective quality estimation. Here, we present a
non-intrusive instrumental quality measure, namely speech-to-
reverberation modulation energy ratio (SRMR) [11] and two
intrusive measures (i.e., a reference signal is required): the per-
ceptual evaluation of perceived quality (PESQ) [12] and the per-
ceptual objective listening quality assessment (POLQA) [13].

3. Experimental Setup
3.1. Corpus Description

The results presented in this paper have been obtained using
anechoic speech files from the REmote COllaborative and Af-
fective interactions (RECOLA) database [14]. It features 27
French-speaking subjects, 16 females and 11 males, from 3 dif-
ferent nationalities (French, Italian and German). Spontaneous
interactions were collected during a conference call while a
collaborative task was performed by the subjects. Six French
speaking annotators measured emotion continuously providing
a value, chosen over a time-continuous emotional scale (rang-
ing from -1 to 1, with 0.01 step), for two dimensions: arousal
and valence [14]. This dataset was also used to assess the per-
formance of emotion recognition systems at the Audio/Visual
Emotion Challenge (AVEC 2016) [4]. The annotated data was
binned with a frame rate of 40 ms. The ground truth was com-
puted as the mean value of the annotations at every time step.
The dataset is segmented into three parts, i.e., training, devel-
opment and testing sets, each containing 9 speech samples of 5

Figure 1: Training setup.

minutes. As labels were available only for training and devel-
opment, all our experiments are based on these two sets. Cor-
rupted speech files were attained with a babble type of noise
from an airport lobby, under five speech-to-noise ratio was con-
sidered: 0 dB, 5 dB, 10 dB, 15 dB, 20 dB.

3.2. Benchmark and Performance Figures

The acoustic benchmark features adopted here are the same set
of acoustic Low-Level Descriptors (LLD) used on the AVEC
Challenge 2016 [4], which cover spectral, cepstral, prosodic
and voice quality information. Such features are based on the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and
extracted using the OpenSMILE feature extraction toolkit [15].
For all the LLD, arithmetic mean and the coefficient of varia-
tion are computed. Percentiles 20, 50 and 80, the range of per-
centiles 20-80 and the mean and standard deviation of the slope
of rising/falling signal parts are applied to pitch and loudness.
For more detailed information on these baseline features refer
to [4].

As figure of merit, the concordance correlation coefficient
(CCC) is used. The method computes the correlation consid-
ering the reproducibility and the level of agreement between
two variables [16]. It combines Pearson’s correlation coeffi-
cient (CC) and the square difference between the mean of the
two samples, as follows

ρc =
2ρσxσy

σ2
x + σ2

y + (µx + µy)2
(3)

where µx and µy represents the mean of each variable, σx and
σy are their variances whereas ρ is the Pearson correlation co-
efficient.

3.3. Test Setup

As described in Figure 1, a front-end based on the OpenSMILE
toolkit is used to extract GeMAPS features. The learning pro-
cess is divided into two phases: training and testing. Differ-
ent from the approach given in [2], where the authors used a
small amount of noisy data during training, no compensation
technique was considered in our experiments and only clean
speech was used, characterizing more severe mismatch scenar-
ios. Model development was based on the same steps taken
for the AVEC Challenge 2016 [4]. That is, after training the
support vector regressor (SVR) on the training set, the attained
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Table 1: Performance, in terms of CCC, of SER system after applying 3 enhancement algorithms and clean speech corrupted with
additive noise.

Clean 0 dB 5 dB 10 dB 15 dB 20 dB Average
Algorithm Features (Model) Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

Unprocessed Benchmark (SVR) 0.786 0.461 0.222 0.048 0.326 0.047 0.455 0.033 0.542 0.096 0.594 0.151 0.427 0.075
SSE Benchmark (SVR) - - 0.439 0.070 0.573 0.106 0.653 0.059 0.670 0.075 0.627 0.093 0.592 0.080

RCTF Benchmark (SVR) - - 0.423 0.130 0.539 0.084 0.651 0.053 0.667 0.048 0.662 0.145 0.588 0.092

model and its respective parameters are validated on the devel-
opment set. This process is performed several times until the
optimal model is obtained. In the testing phase, a total of 9
speech samples per condition were used to test our model.

To evaluate the performance of each speech enhancement
algorithm, all processed speech files are assessed using the
instrumental quality measures described in Section 2. Each
speech file contains two speakers: the interviewer in the back-
ground and the interviewed, who is the subject of the emotion
recognition task. The development set has 4 males and 5 fe-
males with one subject per file. Each objective quality metric
provides a score for each speech file, in total 9 scores are at-
tained. The performance of each enhancement algorithms is
evaluated based on the overall score of each condition, which is
achieved by averaging over the 9 scores previously mentioned.
We have three main goals with this experiment. First, a sim-
ple comparative analysis of these two enhancement algorithms.
Second, comparison of the performance of each algorithm in
respect to noisy (unprocessed) speech. And third is to investi-
gate how the performance of each algorithm correlates with the
performance of the SER system.

4. Experimental Results
In this section, the benchmark SER system performance is eval-
uated after applying speech enhancement on a speech signal
corrupted with background noise. The performance of the two
enhancement algorithms described in Section 2 is thus evalu-
ated based on three instrumental quality measures. Results are
presented in Table 1 in terms of the concordance correlation
coefficient (CCC) and in Figure 2, which provides perceptual
quality predictions of processed speech as well as the correla-
tions between the predictions of each instrumental measure and
the SER performance.

From Table 1, we can observe that the SER system is
severely affected by background noise, especially for lower
SNR, with both enhancement approaches being effective in
mitigating this effect. For valence, for instance, results were
improved for speech signals corrupted with 0, 5 and 10 dB,
with SSE providing the best performance except at 0 dB. For
arousal, enhancement helped to boost SER performance in ev-
ery condition. At the most severe noise condition, 0 dB, CCC
went from 0.222 to 0.439 after applying the SSE enhancement
method. Similar improvement can be verified for the RCTF
method. Overall, the SSE algorithm outperformed the RCTF.

In Figures 2-a, 2-b and 2-c, the performance of these two
speech enhancement methods is compared also in terms of ob-
jective speech quality assessment. According to the scores ob-
tained with POLQA, depicted in Figure 2-a, almost no improve-
ment was found after applying speech enhancement on the cor-
rupted speech signal, which does not relate with the results in
Table 1. On the other hand, POLQA assessment shows that
speech signals processed by the SSE method had better qual-
ity than the ones attained with the RCTF method. This find-
ing relates to the SER performance after enhancement. For

PESQ (see Figure 2-b), both methods improved the quality of
the speech signal when compared to the scores attained from an
unprocessed speech signal. Although this is congruent with the
SER results, PESQ found the RCTF enhancement algorithm to
outperform the SSE one. This is not in accordance with the per-
formance reported in Table 1. Between these two methods, we
can observe better results with the SSE method, which is sup-
ported by the SRMR measure in Figure 2-c. The measure was
able not just to assess both enhancement methods, but also rank
their results towards the benchmark SER performance.

Correlations between each objective measure and the SER
performance for enhanced speech attained from SSE and RCTF,
as well as for unprocessed speech are also given in Figure 2. For
unprocessed speech (second row of Figure 2), the best correla-
tions are achieved by POLQA, R2=0.98, followed by SRMR,
which provided R2=0.97, both for arousal. PESQ achieved
lower performance for arousal predictions compared to these
measures, but provided higher correlation for valence. These
results suggest that these measures can potentially be used to
predict SER performance in noisy environments. The results
for enhanced speech are found from Figure 2-g to Figure 2-i.
Correlations with valence are low for both enhancement meth-
ods and for each measure. This is due to the fact that enhance-
ment had no effect on valence performance, even worsening it
in some cases. For arousal, on the other hand, correlations were
much higher. For SSE, for instance, SRMR provided the best
performance,R2=0.84, againstR2=0.82 attained with POLQA.

5. Conclusion

In this paper, we proposed to investigate how the performance
of speech enhancement algorithms for the SER task correlates
with three instrumental quality measures. First, we compare
these methods with respect to the performance of the bench-
mark speech emotion recognition. We found that both enhance-
ment methods helped to boost performance of SER, with the
SSE method achieving the best results. Second, we performed
speech quality assessment using PESQ, POLQA and SRMR.
We showed that these metrics were quite accurate in estimating
quality across different SNR’s, and also good indicators of SER
performance, especially for arousal predictions. SRMR, for in-
stance, was quite successful in ranking the adopted enhance-
ment methods towards SER performance. For arousal, POLQA
and SRMR seemed to correlate well with SER performance and
could potentially be used for estimate performance in noisy en-
vironments.
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Figure 2: Perceptual performance of two enhancement algorithms based on three perceptual measures. First row describes the the
MOS estimated by (a) POLQA, (b) PESQ and (c) SRMR for five different noise levels. Graphs (d)-(l) report the correlation between the
SER performance (CCC) and the MOS estimated by each measure.
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