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Abstract
In music signal processing, singing voice detection and music
source separation are widely researched topics. Recent progress
in deep neural network based source separation has advanced
the state of the performance in the problem of vocal and in-
strument separation, while the problem of joint source activ-
ity detection and separation remains unexplored. In this paper,
we propose an approach to perform source activity detection
using the high-dimensional embedding generated by Deep At-
tractor Network (DANet) when trained for music source sepa-
ration. By defining both tasks together, DANet is able to dy-
namically estimate the number of outputs depending on the ac-
tive sources. We propose an Expectation-Maximization (EM)
training paradigm for DANet which further improves the sepa-
ration performance of the original DANet. Experiments show
that our network achieves higher source separation and compa-
rable source activity detection against a baseline system.
Index Terms: Source Activity Detection, Source Separation,
Deep learning, Deep Attractor Network

1. Introduction
The increasing popularity of cloud based music sub-
scription services, requires more advanced classifica-
tion/recommendation systems that cater to the interest of
each individuals. As these involve large catalogues of music
tracks across different countries and artists, there is a need for
advanced indexing based on the sources (vocal/instruments)
utilized in a track. In this paper, we propose a new front-end
system that localizes each source present in a music track. This
proposed front-end framework can be applied to varied appli-
cations ranging from query-by-singer, query-by-instruments,
query-by-lyrics to recommendation systems based on similar
rhythmic structure of instruments. We mainly try to answer the
question “which vocal/instrument played when?”.

Two main activity detection systems related to our work in-
clude voice activity detection (VAD) and singing voice detec-
tion (SVD). Both systems distinguish vocal/speech segments
from the rest. Conventional approaches in SVD involve tra-
ditional machine learning algorithms [1, 2], and energy-based
systems [3, 4] are widely used for VAD. In recent years, neural
network based systems have been applied to activity detection
and have shown to be able to generalize well [5, 6, 7, 8]. Since
then, much of the research in activity detection has largely fo-
cused on engineering robust features for deep learning based
approaches [9, 10, 11, 12].

In general, source separation problems can be categorized
into two classes. In-class separation aims at separating sources
that are similar or in the same category, such as speech versus
speech or similarly pitched instruments. Between-class separa-
tion corresponds to the separation of different type of sources,
such as vocal/accompaniment separation. Most of the tradi-
tional methods like computational auditory scene analysis [13],

robust principal component analysis [14] and low-rank mod-
eling [15] may perform well in between-class separation tasks,
but are not robust enough for in-class separation problems. With
the development of deep learning, neural networks for time-
frequency (T-F) mask inference [16, 17] greatly improved the
performance and robustness in the between-class tasks. The
general paradigm in those systems is to perform short-time anal-
ysis on the audio mixture. The mixture spectrogram is fed as
the input to the network, and an estimated T-F mask for each
source is considered as the output. Although those networks
have been successful in music separation, they typically rely
on the effectiveness of independent modeling for each source
[16, 18, 19]. These independent networks are not reasonable
for scaling the separation task to many sources. To reduce the
computational complexity involved in independent modeling,
there has been several attempts at sharing feature/layer across
the target sources [17, 20]. But as we will show by experiments,
these models have limited success in in-class separation. Also
during the training of those models, it is often assumed that all
the sources are active in the mixture, which is not the case in
real-world scenario.

To overcome the in-class separation limitation in fea-
ture/layer sharing network and to stably scale the number of
sources, we propose an end-to-end clustering based approach,
Deep Attractor Network (DANet) [21]. Clustering based ap-
proaches for mask estimation have become the state-of-the-art
in speaker separation since the introduction of deep cluster-
ing [22]. Following the idea, ChimeraNet [20] utilized both
the deep clustering and mask inference methods in a multi-task
fashion and achieved remarkable improvements over conven-
tional approaches in between-class music separation.

We investigated both the ChimeraNet and DANet on sepa-
ration and activity detection performance. We also discuss an
implicit learning method of source activity in the high dimen-
sional embedding space of DANet. Upon analyzing this em-
bedding space, we find that the clusters of similarly pitched in-
struments lie close to one another. To better estimate and model
these clusters distinctively, we propose a complete Expectation-
Maximization training of DANet which significantly improves
the performance of in-class separation. The effectiveness of
DANet in music separation and activity detection demonstrates
that clustering based approaches are competitive alternative to
direct mask-inference using feature/layer sharing networks that
are widely applied in these tasks [17, 23, 20, 24].

2. Music Source Separation
We model our system in time-frequency (T-F) domain [20, 21,
25]. The single-channel music mixture x(t) ∈ R1×T is the
sum of its C sources s1(t), s2(t), ...sc(t). Thus in the com-
plex T-F domain, the short-time Fourier transform (STFT) of
the mixture X(f, t) is the sum total of STFT’s of its sources
Si=1:C(f, t). The flattened magnitude spectrogram of the mix-
ture |Xft| ∈ R1×FT is fed as input to the network. We employ
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T-F masking technique to estimate the individual sources. In
particular, we use wiener-filter like mask (WFM) as the oracle
source assignment represented as mi ∈ R1×FT . The WFM,
mi is computed as follows,

mi,ft =
|Si,ft|2∑C
i=1 |Si,ft|2

, s.t.
C∑

i=1

mi = 1 (1)

The spectrograms of the individual sources are estimated
by performing element-wise multiplication between the mixture
magnitude spectrogram and the masks

|Ŝi,ft| = |Xi,ft| �mi (2)

Further, inverse STFT is applied to obtain the reconstructed
waveform ŝ1(t), ŝ2(t), ...ŝc(t) using the estimated magnitude
spectrograms |Ŝi| and the phase information ∠X(t, f) of the
mixture.

2.1. Deep Attractor Network

The separation problem in Deep Attractor Network (DANet)
is formulated as a multi-class regression problem in a super-
vised setting. For each of the T-F bin, a K dimensional em-
bedding, V ∈ RK×FT is generated through Bi-directional
Long Short Term Memory (Bi-LSTM) layers. The attractors
ai=1:C ∈ R1×K are calculated for mask estimation using only
the prominent T-F bins of the mixture. These prominent bins
are determined by a binary vector, w ∈ R1×FT obtained by
thresholding the power in each of the spectrogram.

ai =
(yi �w)V T

∑
f,t (yi �w)

, i = 1, 2, ...C (3)

yi=C ∈ R1×FT is the known source assignment of each T-
F bin. The masks are then estimated by calculating the distance
between the attractors and the embeddings.

m̂i=1:C = Softmax(ai=1:CV ) (4)

Softmax activation is applied to satisfy equation 1. Using
the evaluated masks, the objective function of the network is the
standard mean squared error

l =
1

C

∑

i

||X � (mi − m̂i)||22 (5)

2.2. Anchored Deep Attractor Network

The knowledge of the source assignment yi of each T-F bin
was necessary to compute the attractors in DANet [21]. How-
ever in Anchored Deep Attractor Network (ADANet) [25] the
source assignment labels are not required. These assignments
are estimated with the help of reference points/anchors in the
embedding subspace, RK×FT .

During training, we initialize N random trainable anchor
points, bj=1:N ∈ R1×K . For music separation, N is equal to
the number of sources C as the sources to be distinguished are
known. We also don’t perform any permutation of the anchor
points as done in [25]. This ensures that each anchor point ini-
tialized corresponds to a single source. The distance between
the anchors and the embeddings is used to compute the source
assignment, ŷi=1:N ∈ RC×FT (note that N = C). This com-
putation is similar to equation 4. Using these estimated assign-
ments, attractors are calculated using equation 3.

2.3. Expectation Maximization Training of DANet

Individual sources in music tracks exhibit high temporal cor-
relation. Most of the cases, multiple instruments play the same
note and are tuned to the same frequency scale. When we model
this data for separation using DANet, there is a high probability
that the clusters overlap. This leads to attractors being formed
close to each other resulting in poor mask estimation. To cir-
cumvent this issue, we consider the variance of the overlapping
clustered data as in Gaussian mixture models to compute the
masks. Thus we propose an Expectation Maximization (EM)
[26] framework for training DANet.

Using the assignments generated by the anchors as dis-
cussed in Section 2.2,G set of Gaussian component probability
density functions, Nj=1:G

∆
= N (x|µj=1:G,Σj=1:G) (note that

G = C) is initialized. During the E-step, the probability that
K dimensional embeddings Vi=1:FT ∈ RK×FT belongs to the
Gaussian component Nj is estimated. This posterior probabil-
ity, P (Nj/Vi) is the estimated mask. E-step is described as
follows,

P (Nj=1:G|Vi=1:FT ) =
P (Vi|Nj)P (Nj)

P (Vi)
(6)

Consider mixing coefficient α, then equation 6 can be re-
formulated as,

P (Nj |Vi) =
αjN (Vi|µj ,Σj)∑G
j=1 αjN (Vi|µj ,Σj)

(7)

During the maximization step, we recompute the Gaussian
component parameters using the equations described below,

µj =

∑FT
i P (Nj |Vi)Vi∑FT
i P (Nj |Vi)

Σj =

∑FT
i P (Nj |Vi)(Vi − µj)(Vi − µj)

T

∑FT
i P (Nj |Vi)

αj =

∑FT
i P (Nj |Vi)

FT

(8)

The EM procedure is executed only for a single step for ev-
ery iteration. The objective function remains the same as equa-
tion 5.

3. Source Activity Detection
3.1. Activity detection using DANet

Activity detection is performed using the trained separation net-
work described in Section 2. Note that the network was never
given any information on silence or active sources. The refer-
ence points/anchors used by ADANet and EM-DANet provides
a cue on the location of embedding in its own subspace. Thus,
we are effectively making use of the location of embeddings
generated by a classification network trained for separation, to
achieve learning for activity detection task. Methods employing
similar fashion include time contrastive learning [27] and gen-
erative adversarial networks [28] where the network is trained
to classify on one task, but the learned embeddings were robust
for other tasks.

The distance between the T-F embedding and the anchors
localizes the points in the sub-space. This distance is the source
assignment ŷ computed from equation 4. Figure 1(a) visualizes
the same. If q is considered to be the number of bins in a T-F
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(a) (b)

Figure 1: Unsupervised source activity detection in deep attractor network. (a) Clustering of vocals and accompaniment visualized
using their source assignment as magnitude along with their respective anchors and attractors for 2 separate scenarios. (top) both the
sources are active; (bottom) only accompaniment is active. (b) The activity detection posteriors computed from the distance between
the embedding and anchor point plotted for different sources of Music.

segment greater than a particular distance threshold t then the
posteriors, pi=1:C ∈ RC×T for activity detection are generated
as follows,

pi=1:C =
qi=1:C

T × F (9)

Essentially the maximum posterior value is attained when
all the T-F bins of a segment are closest to its anchor. This also
ascertains that the source is active in that time period. During
inference, having the knowledge of these posteriors for each
source enables the network to dynamically output masks by
thresholding the posterior value. We can also infer the major
contributing sources in a particular segment by picking the top
n posteriors or single out the major source by selecting the max
posterior.

3.2. Activity detection in mask-inference networks

In a direct mask-inference network such as [20], active and in-
active sources can be determined by investigating the salient
T-F points in the estimated masks. Investigating the embedding
space is not possible in these type of networks. Thus we rely
on the assumption that the silent segments in a source channel
consists of white noise below the energy levels of active sources
[29]. The source assignment labels that are provided will re-
flect this information. In the case of ADANet and EM-DANet,
this information is estimated using anchors without prior knowl-
edge. Thus identifying the active output streams in ChimeraNet

involves thresholding at lower values and the formulation is the
same as equation 9.

4. Evaluation
4.1. Dataset

We make use of professionally mixed musdb18 dataset [30]. It
consists of 150 tracks (~10 hours) split into 100 songs for train-
ing and 50 for test. To improve the performance of the system,
the train dataset is augmented by remixing the sources. ~13.3
hours of train data is created along with a separate ~3.5 hours of
development dataset. The single-channel audio is downsampled
to 16 KHz.

The input feature is computed using STFT with 2048 and
512 point window-size and hop-size respectively. To reduce the
computational complexity, a 300 dimensional mel-filterbank is
multiplied to scale down the spectrogram. The features were
segmented at every 100 frames (~3.2 seconds).

The posteriors for activity detection were evaluated for ev-
ery segment. The true label to evaluate the detection was com-
puted from an energy level based activity detector.

4.2. Network architecture

All the models tabulated contains 4 Bi-directional LSTM layers
with 600 hidden units in each layer. 20 dimension embedding
sub-space is used similar to [21, 25]. Dropout probability is set
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nSDR SIR SAR

Chimera

Vocal 8.99 12.02 2.95
Other 4.58 6.43 0.32
Bass 6.82 8.38 2.06

Drums 6.99 11.59 4.10

DANet

Vocal 8.14 7.78 2.84
Other 4.34 2.98 0.57
Bass 5.53 2.26 3.29

Drums 4.96 8.44 2.42

ADANet

Vocal 7.31 10.06 1.34
Other 3.35 4.37 1.29
Bass 6.26 5.84 2.02

Drums 5.61 14.68 2.17

EM-DANet

Vocal 8.98 11.86 2.98
Other 4.59 6.63 0.35
Bass 6.98 8.09 2.20

Drums 7.28 11.70 4.40

Table 1: Music source separation results on 4 source condition

nSDR SIR SAR

Chimera
Vocal 9.73 16.51 3.30

Accompaniment 4.26 18.57 12.09

DANet
Vocal 9.79 14.23 3.56

Accompaniment 4.38 17.88 12.39

ADANet
Vocal 9.36 16.59 3.37

Accompaniment 3.14 19.51 10.81

EM-DANet
Vocal 9.29 16.37 2.83

Accompaniment 4.37 19.29 12.07

Table 2: Music source separation results on 2 source condition

to 0.5 in all the LSTM layers. Adam optimizer with learning
rate 1e−4 is utlized to train the network. Learning rate is halved
if the validation loss does not decrease in 3 epochs and all the
networks are trained for 100 epochs.

4.3. Results

Music source separation has been evaluated using 3 parameters:
signal-to-distortion ratio (SDR), signal-to-artifacts ratio (SAR)
and signal-to-interference ratio (SIR). The separation results are
shown in Table 1 and 2. The musdb18 dataset provides data
of 4 sources for each track - vocal, bass, drums and others. The
experiments were carried out to measure the performance of the
network in between-class and in-class cases and thus 4 sources
and 2 sources (accompaniment comprises of bass, drums and
others) are considered.

Analysing 4 source condition, EM-DANet significantly
outperforms ChimeraNet in in-class separation. EM-DANet
also improves over the performance of existing DANet architec-
tures. Both ChimeraNet and EM-DANet perform similarly in
between-class separation of sources namely vocals. In 2 source
condition all the networks output comparable performances.
However DANet architectures perform better than ChimeraNet

EER AUC

ADANet
Vocal 23.38 84.10
Drums 23.57 84.47
Bass 34.89 70.46

EM-DANet
Vocal 15.05 89.65
Drums 18.13 87.41
Bass 25.41 80.64

Chimera
Vocal 16.25 90.89
Drums 19.11 88.26
Bass 24.98 79.94

Table 3: Equal Error Rate (EER) and Area Under Curve (AUC)
evaluated for activity detection task on 4 source condition.

EER AUC
ADANet Vocal 14.33 90.99

EM-DANet Vocal 14.11 90.95
Chimera Vocal 14.79 92.01

Table 4: Equal Error Rate (EER) and Area Under Curve (AUC)
evaluated for activity detection task on 2 source condition.

in all the considered metrics. It is evident from the results that
as we scale the number of sources, clustering methods with the
right optimization and training paradigms can outperform direct
mask-inference methods.

To evaluate the activity detection performance, we plot a
Receiver Operating Characteristic (ROC) curve. ROC curve
was plotted against True Alarm Rate (TAR) and False Alarm
Rate (FAR) to obtain Area Under Curve (AUC). Equal Error
Rate (EER) is also shown and is defined as the point at which
False Reject Rate (FRR) equals FAR. Better performing sys-
tems have a low EER and high AUC. The results of this task are
shown in Table 4 and 3. Sources not representing a particular
instrument were dropped from evaluation (other and accompa-
niments). Despite the difficulty to distinguish the silence seg-
ment of a source when several other sources are active in the
same embedding sub-space, EM-DANet exhibits comparable
performances with ChimeraNet across all the sources in both
2 source and 4 source condition. Amongst the DANet archi-
tectures, EM training of DANet provides remarkable improve-
ments over previous training of ADANet. Figure 1(b) plots the
posteriors generated by EM-DANet in 4-source scenario.

5. Conclusion
In this paper, we demonstrate the effectiveness of deep attrac-
tor network in the task of music source separation and activ-
ity detection. We have also proposed a representation learn-
ing approach to compute the activity detection by declaring
an anchor in the embedding subspace. A detailed generalized
Expectation-Maximization framework for training deep attrac-
tor network is discussed. From our experiments, this paradigm
greatly benefits the separation of similar pitched/frequency in-
struments without any decline in performance of other metrics.
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