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Abstract
We present “DiViMe”, an open-source virtual machine

aimed at packaging speech technology for real-life data, and
developed in the context of the “Analyzing Children’s Lan-
guage Environments across the World” Project. This first re-
lease focuses on Speech Activity Detection, Speaker Diariza-
tion, and their evaluation. The present paper introduces the
set of included tools and the current workflow, which is fo-
cused on making minimal assumptions regarding users’ tech-
nical skills. Additionally, we show how the current DiViMe
tools fare against three sets of challenging data. In a first ex-
periment, we look at performance with samples extracted from
daylong recordings gathered using the LENATM system from
English-learning children. We find that the performance of the
tools currently in DiViMe is not far from that achieved by the
LENATM proprietary software. In a second experiment, we gen-
eralize to other samples of child-centered daylong files, gath-
ered with non-LENATM hardware from non-English-learning
children, showing that performance does not degrade in this
condition. Finally, we report on performance in the DiHARD
2018 Challenge Test Data. Originally conceived in the “Speech
Recognition Virtual Kitchen”, DiViMe is a promising platform
for packaging speech technology tools for widespread re-use,
with potential impact on both fundamental and applied speech
and language research.
Index Terms: speech activity detection, speaker diarization,
virtual machine, language acquisition, children DiHARD Chal-
lenge

1. Introduction
Research projects in linguistics, speech pathology, and other
language sciences often collect and compare ecological data
from different cultures and settings with a diverse set of acquisi-
tion devices. The resulting heterogeneous speech corpora truly
deserve the “in the wild” label, and have been shown to test the
limitations of even state-of-the-art of speech processing algo-
rithms. The difficulties in processing data such as child speech
in a daily-life environment have been highlighted at the 2017
JSALT Summer Workshop at CMU [1], where it became appar-
ent that unconventional speech containing mumble, cry, over-
laps and other artifacts required finer models and motivated the
organization of the 2018 DIHARD Challenge [2].

As the field advances in solving “hard diarization”, there is
another limitation that should not be forgotten: the difficulty to
deploy cross-platform and user-friendly softwares for linguis-
tic projects. Many recent speech processing algorithms with
high performance offer open-source implementations. How-
ever, installing and running such code is not always straight-
forward. In particular, integrating an open-source project into

a local processing pipeline is a challenging task since file for-
mats and environment settings might differ from one tool to
another. This technical hurdle is a threat to the reproducibil-
ity of experiments. Complex tools might lead to excellent per-
formance, but do not benefit the larger scientific community as
they should if they cannot be easily applied to reproduce exper-
iments and to build on top of them. These observations moti-
vated us to develop the ACLEW Diarization Virtual Machine -
DiViMe for short. DiViMe follows in the Speech Recognition
Virtual Kitchen’s [3][4] footsteps in that it is a virtual machine
(VM) gathering speech processing tools inside a unified com-
putational environment. As a result, it can be deployed on most
host computer systems and offers a simple interface to run the
integrated models within a global pipeline.

Our main goal is to bring these systems within the reach
of the general language scientist, requiring only minimal com-
puting power and programming skills. We are ideally posi-
tioned to contribute this because we are part of a large inter-
national collaboration grant, “ACLEW: Analyzing Child Lan-
guage Experiences Around The World” [5]. The scientific goal
of this grant is to document patterns of variation and stabil-
ity in young children’s language experiences, and their sub-
sequent development, as documented via daylong recordings.
Daylong recordings are particularly interesting for the present
project because they present a difficult diarization problem (and
in the case of acquisition data, probably the hardest case imag-
inable), and they are a natural test case for VM use because
these data are typically difficult or impossible to share broadly,
and thus must be analyzed in situ. Additionally, our collab-
orator network includes some members with very limited or
no previous programming experience, allowing us to beta test
that instructions are clear and usable. Moreover, much re-
search in this field employs a unified recording device and soft-
ware toolkit for automatic speech processing developed by the
LENATM Foundation. While this product is not open source, it
provides an interesting benchmark to compare our work against
since it was specifically designed to process children’s speech.

In this paper, we summarize our current progress. At the
time of submission, DiViMe contains a set of algorithms which
were designed to automatically detect and label speaker turns in
naturalistic audio recordings. Two main tasks are distinguished
to achieve this goal. A first category of tools perform Speech
Activity Detection (SAD). The output of such tools is typically
a file of time labels with ‘speech’ or ‘non-speech’ tags (although
for one tool other classes such as ‘music’ or ‘noise’ can also be
recognized). Once the speech is located in the audio files, a
second category of tools can be applied to attribute each occur-
rence of speech to a specific speaker. This second task is named
Talker Diarization (TD).
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2. Description
2.1. Workflow

2.1.1. Installation and application

The VM is designed with Vagrant [6], which is a tool enabling
to build and manage virtual machine environments. It comes
with a Vagrantfile script which contains the core architecture
of the computing system to be deployed. Based on this file,
Vagrant runs the virtual environment on top of usual providers
such as VirtualBox [7] or Docker [8]. We provide a stable Va-
grantfile which enables us to easily build and run a Ubuntu vir-
tual machine isolated from the hosting computer system. The
resulting environment runs on any local machine regardless of
the hosting OS. It installs all required dependencies to have the
speech processing tools introduced in this paper working in-
side the VM. The only way to commute files between the VM
and the local supporting machine is a synced folder enabling to
transfer data from the host to the VM and results from the VM
back to the host. The basic workflow of the VM is summarized
in the schematic diagram of Figure 1.

Once the installation is complete, the tools that the VM pro-
vides can be applied to data files on the user’s host machine
with a series of simple shell commands (e.g., vagrant ssh
-c "tools/TOOLNAME data/"). We provide users with
a detailed README available on our public repository where
the software can be downloaded https://github.com/
aclew/DiViMe

2.1.2. Input and output files

Audio files are expected to be in .wav format. If the user has
annotations at either the speech activity or diarization levels,
for simplicity we only require the RTTM [9] format. That is,
if the user wants to evaluate the SAD performance, then he/she
will need to provide the RTTM label for each wav file contain-
ing the human-annotated reference annotation. Notice that this
gold RTTM can also be provided for the diarization tools, so as
to assess talker diarization performance in the absence of SAD
errors.

The system returns all annotations in the RTTM format,
with the name of the tool that produced them appended to the
original file name. Evaluations are returned in a dataframe for-
mat, with wavs as rows, and metrics as columns.

2.2. Tools in the current DiViMe release

The current DiViMe builds exclusively on tools that have been
developed, documented, and made available by independent re-
searchers. We therefore keep the descriptions very short, and
instead provide links to the original resources, where readers
will be able to find the full technical descriptions.

We currently provide two options for Speech activity de-
tection (SAD) tools. The first is the LDC SAD [10], which
relies on HTK [11] to band-pass filter and extract PLP features,
prior to applying a broad phonetic class recognizer trained on
the Buckeye Corpus [12] using a GMM-HMM model. An offi-
cial release by the LDC is currently in the works, and should be
ready by the time Interspeech is held.

Our second SAD tool will be referred to as Noiseme SAD
because it draws from a broader “noiseme classifier” [13], a
neural network that can predict frame-level probabilities of
17 types of sound events (called “noisemes” [14]), including
speech, singing, engine noise, etc. The network consists of one
single bidirectional LSTM layer with 400 hidden units in each

direction. It was trained on 10 h of HAVIC data [15] with the
Theano toolkit which we will change in the future since this
framework is no longer maintained. The OpenSMILE toolkit
[16] is used to extract 6,669 low-level acoustic features, which
are reduced to 50 dimensions with PCA. For our purposes, we
summed the probabilities of the classes “speech” and “speech
non-english” and labeled a region as speech if this probability
was higher than all others.

We currently provide one Talker Diarization (TD) tool. The
DiarTK model imported in the VM is a C++ open source toolkit
[17]. The algorithm first extracts MFCC features, then per-
forms non-parametric clustering of the frames using agglom-
erative information bottleneck clustering [18]. At the end of the
process, the resulting clusters correspond to identified speakers.
The most likely Diarization sequence is computed by Viterbi
realignement.

Finally, we have evaluation tools for both tasks. For SAD,
we employ the evaluation included in the LDC SAD [10], which
returns the false alarm (FA) rate (proportion of frames labeled as
speech that were non-speech in the gold annotation) and missed
speech rate (proportion of frames labeled as non-speech that
were speech in the gold annotation). For TD, we employ the
evaluation developed for the DiHARD Challenge [19], which
returns a Diarization error rate (DER), which sums percentage
of speaker error (mismatch in speaker IDs), false alarm speech
(non-speech segments assigned to a speaker) and missed speech
(unassigned speech).

One important consideration is in order: What to do with
files that have no speech to begin with, or where the system
does not return any speech at the SAD stage or any labels at the
TD stage. This is not a case that is often discussed in the litera-
ture because recordings are typically targeted at moments where
there is speech. However, in naturalistic recordings, some ex-
tracts may not contain any speech activity, and thus one must
adopt a coherent framework for the evaluation of such instances.
We opted for the following decisions.

If the gold annotation was empty, and the SAD system re-
turned no speech labels, then the FA = 0 and M = 0; but if the
SAD system returned some speech labels, then FA = 100 and
M = 0. Also, if the gold annotation was not empty and the sys-
tem did not find any speech, then this was treated as FA = 0 and
M = 100.

As for the TD evaluation, the same decisions were used
above for FA and M, and the following decisions were made
for mismatch. If the gold annotation was empty, regardless of
what the system returned, the mismatch rate was treated as 0.
If the gold annotation was empty but a pipeline returned no TD
labels (either because the SAD in that system did not detect any
speech, or because the diarization failed), then this was penal-
ized via a miss of 100 (as above), but not further penalized in
terms of talker mismatch, which was set at 0.

3. Experiments
We conducted several experiments to test and benchmark the
SAD and TD tools currently included in DiViMe. To this end,
we used 4 datasets, as follows.

• ACLEW Starter-English Plus (ASE+; 3h): The ACLEW
Starter dataset [20] contains 11 5-minute clips extracted from
as many daylong recordings gathered with a LENATM device
from English-speaking children growing up in urban areas in
the UK [21], the US [22, 23], and Canada [24]. Melanie
Soderstrom’s team additionally annotated 8 5-minute clips
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Figure 1: Schematic diagram of data flow in DiViMe. Significant inputs and outputs (as well as log files) of the individual tools are
being read from and written to synced folders of the host computer. Processing is triggered via shell commands, on the host machine.

from as many recordings [24]. Clips were extracted from
regions with a lot of speech. Annotators attempted to label
speakers as a function of their individual identity, although
they did not know the recorded families.

• Tsimane (9h): A total of 537 1-minute clips were extracted
from 1-2 daylong recordings gathered from 27 children learn-
ing Tsimane in rural Bolivia [25]. Of these, 227 came from
LENATM recordings (henceforth Tsi-LENA), and the remain-
ing 310 from other devices (USB or Olympus; henceforth
Tsi-other). Clips were sampled periodically throughout the
day to avoid sampling bias. Speakers were labeled using
broad classes (children, female adults, male adults), with the
exception of the child wearing the recorder and the most com-
mon female adult voice. The annotator did not know the
recorded families.

• Casillas (10h): A total of 190 1-, 5-, or 6-minute clips were
extracted from daylong recordings gathered from 10 children
learning Tseltal in rural Mexico using an Olympus recorder.
Some of the clips were extracted randomly throughout the
day; others targeted regions with a lot of speech by the child,
or a lot of conversational interactions. Annotators knew the
recorded families well and were able to label speakers as a
function of their individual identity.

• DiHARD (21h): The DiHARD Evaluation data set contains
5-10 minute clips sampled from heterogeneous corpora in-
cluding recordings similar to those in ASE+ but also meeting
data, and many others. More details can be found on the Chal-
lenge website 1. To our knowledge, annotators attempted to
label the (unknown) speakers as a function of their individual
identity.

Results for SAD at the time of final submission are shown
on 1 and 2; those for TD are shown on 3.2 Recordings not
collected with LENATM hardware cannot be analyzed with the
LENATM software, and thus such combinations are shown as
NA below.

1http://coml.lscp.ens.fr/dihard/data.html
2At the time of final submission, errors were found in a few of the

clips’ gold annotation. We are in the process of correcting these, and
will post revised results on https://osf.io/kwdhq/.

Dataset LDC Noiseme LENA
ASE+ 46% 9% 16%
Tsi-LENA 63% 17% 76%
Tsi-other 45% 8% NA
Casillas 34% 8% NA
DiHARD 15% 15% NA

Table 1: False alarm (FA) rates in SAD as a function of the
dataset and the SAD tool. Lower is better.

Dataset LDC Noiseme LENA
ASE+ 29% 70% 71%
Tsi-LENA 9% 35% 1%
Tsi-other 12% 33% NA
Casillas 22% 68% NA
DiHARD 19% 44% NA

Table 2: Miss (M) rates in SAD as a function of the dataset and
the SAD tool. Lower is better.

Dataset Gold LDC Noiseme LENA
ASE+ 53% 182% 114% 143%
Tsi-LENA 106% 174% 121% 263%
Tsi-other 97% 161% 126% NA
Casillas 89% 186% 146% NA
DiHARD 58% 65% 72% NA

Table 3: DER in TD as a function of the dataset. The LENA
column indicates diarization performance for the LENA algo-
rithm as a whole. For all other columns, diarization was done
with DiarTK, and the column label indicates the SAD annota-
tion used as input. Gold column gives the results of applying
DiarTK to the human annotated SAD. The DiHARD results are
as provided by the Challenge organizers. Lower is better.

3.1. Experiment 1: How well do we fare against the current
field standards?

The LENATM software performs joint segmentation and classi-
fication with acoustic models trained with 150 hours of hand-
annotated data from English-learning American children grow-
ing up in urban settings. It returns a segmentation of the audio
into categories: key child, other children, female adult, male
adult, TV noise, other noise, silence, and overlap (which is over-
lap between any of the non-silence categories). For the pur-
poses of our experiments, we declared as non-speech all the
non-human categories as well as the speech categories that the
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system classified as “far” from their acoustic models, because
in pilot analyses the SAD performance was better without than
with these “far” items.

To focus on differences that were stable rather than av-
erages like the ones reported on the Tables above, we fit a
mixed regression model (in R [26], package lme4 [27]), declar-
ing corpus, system, and their interaction as fixed effects and
the clip ID as random effect. Given the question addressed in
this experiment, we focus on the two corpora gathered with a
LENATM device. We declared ASE+ as the baseline for cor-
pus (since it is closer to what the LENATM system was de-
veloped on), and LENATM as the baseline for system. Re-
sults are shown on Table 4. Effects of corpus will be dis-
cussed in the next subsection. Turning to the current key in-
terest, LDC SAD led to a significantly higher FA and lower
Miss rates than LENATM , whereas Noisemes led to a non-
significantly lower FA and higher Miss rates. Given that the
reduction in Miss is smaller than the gain in FA with the LDC
SAD system, this appears like a competitive alternative to the
LENATM system, as does Noisemes which performed no better
or no worse than LENATM . The results of the DER analyses,
which compound errors over the SAD and TD phases, confirm
these conclusions, as neither of our systems differed from the
LENATM significantly for ASE+, and there was only an interac-
tion between LDC and corpus at t = 2.1.

Predictor FA M DER
(Intercept) 17 (7)* 69 (4)* 138 (64)*
Tsi-lena 59 (7)* -68 (4)* -24 (61)
LDC 29 (8)* -40 (5)* 125 (66)
Noisemes -8 (8) 1 (5) 44 (61)
LDC*Tsi-lena -42 (8)* 47 (5)* -134 (64)*
Noisemes*Tsi-lena -51 (8)* 33 (5)* -118 (64)

Table 4: Mixed model regressions predicting performance from
the system, corpus, and their interaction. Each cell shows the
estimate (and its standard error) corresponding to the crossing
of the predictor and the dependent variable. An asterisk indi-
cates an effect with t > 2.

3.2. Experiment 2: How well do tools do with audio col-
lected with other devices and untrained populations?

The main effect of corpus in Table 4 shows a significantly higher
FA and significantly lower M for Tsi-lena than ASE+, due to the
fact that there was a great deal more silence in the former files
(in fact, nearly half of the Tsimane clips had no speech in them).
This effect is caused by the Tsimane clips being randomly sam-
pled throughout the day and night, whereas the ACLEW Starter
set clips were selected because there was speech in them.

To provide a broader picture, we fit another mixed model
predicting DER (which represents global performance for a
given pipeline), this time with the 4 child corpora. As before,
fixed effects were corpus, method, and their interaction, with
baseline levels ASE+ and LENATM . Only two of the interac-
tions (LDC*Tsi-LENA, and Noisemes*Tsi-LENA, indicating
lower DERs in this corpus when our systems were used rather
than the LENA system) had t>2, suggesting that all systems
performed similarly to each other and across corpora. As for
the impact of the hardware, the results of Tsi-LENA and Tsi-
other (recorded with non-LENA devices) do not highlight better
performances on Tables 1, 2, 3 when using the LENA hardware.

3.3. Experiment 3: Benchmarking against the DiHARD
Challenge (data)

We had two goals by using the DiHARD Challenge data. First,
the performance of the same tools across our child language
acquisition data versus the DiHARD data indirectly speaks to
how comparably difficult our datasets are. The DiHARD test
data contains an heterogeneous mix of data, whereas all of the
other datasets we tested here are children-centered, collected
in a completely ecological fashion. We observe that DER is
higher for the non-DiHARD datasets than the DiHARD Chal-
lenge dataset, regardless of the tool.

Second, we can compare the tools in DiViMe against the
leaderboard of the Challenge on the DiHARD data so as to as-
sess to what extent our tools are competitive. Our primary pur-
pose was to offer a quick and easy access to speech processing
tools to conduct research. Therefore, we did not expect the tools
we introduced so far to outperform the state-of-the-art of SAD
and TD. This expectation was confirmed: Our systems score at
the bottom of the DiHARD chart for both tracks. This is not
only the case due to our SAD being underperforming, as clear
from the fact that TD with gold SAD still led to a very high
error rate. However, we did not retrain our tools on our testing
datasets to reflect an ”out of the box” use of the VM. While we
feel that DiViMe fits its function in terms of usability, we look
forward to incorporating better-performing SAD and TD tools
in the future.

4. Conclusions
We presented a Virtual Machine that almost anybody can use to
detect speech segments using various advanced techniques.We
outlined the VM’s use, its internals, and provided pointers to
currently available algorithms. Our benchmarks showed that
ecological language acquisition data are particularly hard even
when compared with the DiHARD Challenge data. We would
look forward to integrating better-performing SAD and TD sys-
tems. In next steps, we will incorporate models that can be
retrained inside the VM. In the meanwhile, for several tasks
and dataset combinations, we remain competitive against the
LENATM , which is the current go-to system in the language ac-
quisition field, making DiViMe a competitive open-source so-
lution for this audience. Additionally, the algorithms currently
included are robust to variation in the recording hardware used
and the population from which data are collected, which are cru-
cial features for our target users. In sum, DiViMe is a promising
tool that makes complex processing models accessible to non-
technical users.

5. Acknowledgements
This work was supported by a Trans-Atlantic Platform ”Digging into
Data” collaboration grant (ACLEW: Analyzing Child Language Ex-
periences Around The World), with the support of Agence Nationale
de la Recherche (ANR-16-DATA-0004 ACLEW; ANR-14-CE30-
0003 MechELex, ANR-10-IDEX-0001-02 PSL*, ANR-10-LABX-
0087 IEC) and the National Endowment for the Humanities (HJ-
253479-17), as well as funding from the J. S. McDonnell Foundation.
This work used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE), which is supported by National Science Foundation
grant number OCI-1053575. Specifically, it used the Bridges system,
which is supported by NSF award number ACI-1445606, at the Pitts-
burgh Supercomputing Center (PSC). We also directly benefited from
interactions at the 2017 Frederick Jelinek Memorial Summer Work-
shop, which was supported by Amazon, Apple, Facebook, Google, and
Microsoft (in alphabetical order). We are grateful to our beta testers,
particularly Okko Räsänen.

1386



6. References
[1] N. Ryant, E. Bergelson, K. Church, A. Cristia, J. Du, S. Ganap-

athy, S. Khudanpur, D. Kowalski, M. Krishnamoorthy, R. Kul-
shreshta, M. Liberman, Y.-D. Lu, M. Maciejewski, F. Metze,
J. Profant, L. Sun, Y. Tsao, and Z. Yu, “Enhancement and anal-
ysis of conversational speech: JSALT 2017,” in Proc. ICASSP.
Calgary, BC; Canada: IEEE, Apr. 2018, accepted.

[2] “The first DIHARD speech diarization challenge,” https://coml.
lscp.ens.fr/dihard/index.html, accessed: 2018-06-17.

[3] A. Plummer, E. Riebling, A. Kumar, F. Metze, E. Fosler-Lussier,
and R. Bates, “The speech recognition virtual kitchen: Launch
party,” in Proc. INTERSPEECH. Singapore: ISCA, Sep. 2014,
http://www.speechkitchen.org/.

[4] “The speech recognition virtual kitchen,” https://github.com/srvk,
accessed: 2018-06-17.

[5] “ACLEW - analyzing child language experiences around the
world,” https://sites.google.com/view/aclewdid/home, accessed:
2018-06-17.

[6] “Vagrant by hashicorp,” https://www.vagrantup.com/, accessed:
2018-06-17.

[7] “Oracle vm virtualbox,” https://www.virtualbox.org/, accessed:
2018-06-17.

[8] “Docker - build, ship and run any app, anywhere,” https://www.
docker.com/, accessed: 2018-06-17.

[9] “An object oriented description of speech for EARS,” https:
//catalog.ldc.upenn.edu/docs/LDC2004T12/RTTM-format-v13.
pdf, accessed: 2018-06-17.

[10] N. Ryant, “Ldc sad,” https://github.com/
Linguistic-Data-Consortium, accessed: 2018-06-17.

[11] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., “The htk book,”
Cambridge university engineering department, vol. 3, p. 175,
2002.

[12] M. A. Pitt, K. Johnson, E. Hume, S. Kiesling, and W. Raymond,
“The buckeye corpus of conversational speech: labeling conven-
tions and a test of transcriber reliability,” Speech Communication,
vol. 45, no. 1, pp. 89–95, 2005.

[13] Y. Wang and F. Metze, “A first attempt at polyphonic sound event
detection using connectionist temporal classification,” in Proc.
ICASSP. New Orleans, LA; U.S.A.: IEEE, Mar. 2017.

[14] S. Burger, Q. Jin, P. F. Schulam, and F. Metze, “Noisemes: Man-
ual annotation of environmental noise in audio streams,” Carnegie
Mellon University, Pittsburgh, PA; U.S.A., Tech. Rep. CMU-LTI-
12-07, 2012.

[15] S. Strassel, A. Morris, J. G. Fiscus, C. Caruso, H. Lee, P. D. Over,
J. Fiumara, B. L. Shaw, B. Antonishek, and M. Michel, “Creating
havic: Heterogeneous audio visual internet collection,” in Proc.
LREC. Istanbul, Turkey: ELRA, May 2012.

[16] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent devel-
opments in opensmile, the munich open-source multimedia fea-
ture extractor,” in Proceedings of the 21st ACM international con-
ference on Multimedia. ACM, 2013, pp. 835–838.

[17] D. Vijayasenan and F. Valente, “Diartk: An open source toolkit
for research in multistream speaker diarization and its application
to meetings recordings,” in Thirteenth Annual Conference of the
International Speech Communication Association, 2012.

[18] D. Vijayasenan, F. Valente, and H. Bourlard, “Agglomerative in-
formation bottleneck for speaker diarization of meetings data,”
in Automatic Speech Recognition & Understanding, 2007. ASRU.
IEEE Workshop on. IEEE, 2007, pp. 250–255.

[19] N. Ryant, “Diarization evaluation,” https://github.com/nryant/
dscore, accessed: 2018-06-17.

[20] E. Bergelson, A. Warlaumont, A. Cristia, M. Casillas, C. Rosem-
berg, M. Soderstrom, F. Metze, E. Dupoux, O. Rasanen,
C. Rowland, and S. Durrant, “Starter-aclew,” 2017, accessed:
2018-06-17. [Online]. Available: http://databrary.org/volume/390

[21] C. Rowland, A. Bidgood, S. Durrant, M. Peter, and J. M. Pine,
“The language 0-5 project corpus,” 2016.

[22] E. Bergelson, “Bergelson seedlings homebank corpus,” 2016.

[23] A. S. Warlaumont and G. M. Pretzer, “Warlaumont homebank cor-
pus,” 2016.

[24] K. McDivitt and M. Soderstrom, “Mcdivitt homebank corpus,”
2016.

[25] C. Scaff, J. Stieglitz, and A. Cristia, “Daylong recordings
from young children learning Tsimane in Bolivia,” https://nyu.
databrary.org/volume/445, accessed: 2018-03-03.

[26] R. C. Team et al., “R: A language and environment for statistical
computing,” 2013.

[27] D. Bates, M. Maechler, B. Bolker, S. Walker et al., “lme4: Lin-
ear mixed-effects models using eigen and s4,” R package version,
vol. 1, no. 7, pp. 1–23, 2014.

1387


