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Abstract

We present our research on continuous speech recognition
based on Surface Electromyography (EMG), where speech in-
formation is captured by electrodes attached to the speaker’s
face. This method allows speech processing without requiring
that an acoustic signal is present; however, reattachment of the
EMG electrodes causes subtle changes in the recorded signal,
which degrades the recognition accuracy and thus poses a ma-
jor challenge for practical application of the system. Based on
the growing body of recent work in domain-adversarial train-
ing of neural networks, we present a system which adapts the
neural network frontend of our recognizer to data from a new
recording session, without requiring supervised enrollment.
Index Terms: Silent Speech interface, Neural Networks, EMG-
based Speech Recognition, Domain Adaptation

1. Introduction
The field of biosignal-based speech recognition, i.e. speech
recognition without making use of the acoustic signal, has seen
a major surge of interest during the past decade, propelled
by innovative recording technologies, increasing computational
power, and the needs of an ageing population and an ever-
mobile society: the latter may profit from the possibility to com-
municate silently and confidentially in public places, the former
can potentially use speech capturing devices based on biosignal
technology to overcome speaking disabilities [1].

In this paper, we consider a speech recognizer based on sur-
face electromyography (EMG): Small electrical currents which
emerge as a byproduct of human muscular activity are captured
by electrodes attached to the subject’s face, thus allowing to
communicate even when no acoustic signal is available or can
be captured. This device is lightweight and mobile, does not
require intrusive wiring, and allows continuous speech recogni-
tion [2] as well as real-time speech resynthesis [3]. In this paper
we consider only EMG-based speech recognition.

The myoelectric signal varies when the recording elec-
trodes are removed and reattached, even when the speaker is
the same: i.e. the signal varies across sessions. Creating a truly
session independent EMG-based speech recognizer has been a
long-standing goal [4, 5]. In this paper we use state-of-the-art
neural network methods to achieve improved session indepen-
dency using unsupervised adaptation: Based on our previous
work [6], where a Deep Neural Network Frontend is combined
with HMM-based sequence modeling, we augment the fron-
tend part with Domain-Adversarial training [7] to adapt the sys-
tem to data of a target session without requiring any supervised
training data from the target session at all.

2. Related Work
Biosignal-based speech recognition is an active field of re-
search, with very diverse modalities and methods under in-
vestigation [1, 8, 9]. Currently, the most promising concepts
are (Permanent) Magnetic Articulography (PMA) [10], where
small magnets glued to or even implanted into the articulators
yield a high-quality representation of the underlying speech;
visual methods [11], which may be augmented by ultrasound
imaging [12]; and the electromyographic approach [13, 14, 3],
which is less intrusive than PMA and allows very lightweight
signal capturing devices. A major line of research is real-time
speech reconstruction [10, 3, 15], which plays a major role for
practical communication scenarios, but also for user feedback.

Major landmarks of EMG-based speech processing include
continuous speech recognition with phone [2] and Bundled
Phonetic Feature (BDPF) [16] models, vocabulary-free direct
speech synthesis from the speech signal [17, 18, 3], and in the
context of this paper, supervised [4] and unsupervised [5] ses-
sion adaptation using Gaussian mixture models.

(Deep) artificial neural networks (DNN), first used in
speech recognition in the 1990’s [19], have by now become a
de facto standard. The first systems used hybrid approaches:
DNNs are used as a frontend for computing local probabilities,
which are subsequently fed into an HMM-style search algo-
rithm [20]. More recent systems model the entire processing
pipeline from (usually spectral) input features to phone-level or
even word-level output by recurrent neural networks [21].

Domain adaptation / transfer learning in neural networks
has been investigated in a variety of contexts, in particular in
image recognition. The usual assumption is that labeled data
from the source domain and unlabeled data from the target do-
main are to be used to train a classifier which performs well
on the target domain. A common approach, which is also used
in this paper, is to encourage similar representations of source
data and target data at some intermediate layer (see section 4.3
for details on our specific implementation), this similarity can
be measured and enforced directly [22, 23], or indirectly with
an adversarial network [7]. Further methods include the train-
ing of even more complex network architectures, attempting to
factorize the information contained in the input data in different
ways [24, 25, 26].

3. Data Corpus and Feature Extraction
We use the EMG-UKA Corpus [27], which is currently the
largest available data corpus of myoelectric recordings of
speech. It consists of a total of 7:32 hours of EMG and acoustic
speech recordings in three speaking modes (audible, whispered,
and silent), of which we only use the audible part (this allows us
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Figure 1: Electrode positioning (from [27]) with chart of the
underlying muscles (muscle chart adapted from [28])

to concentrate on session discrepancies, see ref. [29] for a trea-
tise on speaking mode differences). Figure 1 shows the record-
ing setup [30]: A total of 6 EMG channels is recorded, covering
the most important facial muscles; as in previous studies, chan-
nel 5 is not used due to artifacts. EMG data is recorded at 600Hz
sampling rate. Audio data is simultaneously recorded with a
close-talking microphone and used to create the phone-level
alignments which are part of the corpus distribution, otherwise
acoustic data is not used in this study.

From the total of 61 sessions, we use 48 sessions by the
two speakers who recorded a large number of sessions: Pre-
cisely, these are sessions 1 – 32 by speaker 2, and sessions 1 –
16 by speaker 8. Each session consists of 50 sentences, 10 of
which are used as test set, the remaining 40 sentences per ses-
sion are used for training and unsupervised adaptation. The test
sentences are identical across sessions.

For experiments on session independency, we subdivide the
set of 48 sessions as follows: We create six blocks of eight
consecutive sessions (four blocks for speaker 2, two blocks for
speaker 8). All parameter tuning is performed on blocks 1 and 3
of speaker 2 and block 1 of speaker 8 (the development dataset),
the remaining data is set aside for the final evaluation of our ex-
periments, see section 5.3. Note that the subdivision into train-
ing and test data is done within each session, whereas the held-
out evaluation dataset consists of entire sessions. All systems
are speaker-dependent. Table 1 gives the statistics of the dataset,
which in total contains more than 2 hours of EMG recordings.

Single experiments are run by block, as follows: One ses-
sion is designated as target session for unsupervised adaptation,
and one session is set aside as extra session for future exper-
iments. The remaining six sessions form the source data on
which supervised training is performed. Thus, each system re-
ceives around 17 minutes of supervised training data. In total,
eight experiments with different session subdivision are run on
each block, so that each session is taken as target session for
exactly one experiment.

4. Methods
4.1. EMG Features

Time-domain EMG features [31, 2] are derived as follows [6]:
The input EMG data is windowed with a window length of
27ms and a window shift of 10ms, for each window, a low-
frequency (LF) and a high-frequency (HF) part are extracted
using a weighted moving average filter, and finally five features
(LF power, LF absolute mean, HF power, HF absolute mean,
and HF zero-crossing rate) are computed. Thus we compute
25 features from the five input EMG channels. The features
are normalized independently for each session (which greatly
improves the accuracy of the session-independent systems). Fi-

Table 1: Statistics of the data corpus

Number of Avg ses- Total
Set Speakers Sessions sion length length
Dev 2 24 2:53 1:09:17
Eval 2 24 2:41 1:04:30

nally, a Linear Discriminant Analysis (LDA) transformation is
computed on a context window of 11 frames. The LDA target
classes are taken from the subphone alignments contained in the
corpus distribution, where each phone is subdivided into three
substates (begin, middle, and end), yielding a total of 3 × 45
subphone classes plus a silence class. The LDA cutoff dimen-
sion varies, see below.

4.2. Baseline System

Our speech recognizer is a hybrid system, where an HMM
backend performs a time-synchronous beam search over state
probabilities generated by a frontend which performs recog-
nition at the frame level, without taking temporal information
into account. The two frontends employed in this study are a
classical Gaussian Mixture Model (GMM) and a (significantly
more performant) Deep Neural Network (DNN) as introduced
in prior work [6]. We always train at the frame level (with 11
context frames, see section 3), since high-quality frame-level
alignments are available, there is no need to perform realign-
ment during training. The GMM frontend and the search are
implemented with the software package BioKIT [32], for the
DNN training and evaluation, we use Tensorflow [33].

GMM frontend The GMM frontend is based on Bundled
Phonetic Features (BDPF) [16], which are an efficient method
to create data-adapted context-dependent models for small data
sets where classical context-dependent modeling cannot be ap-
plied. For BDPF modeling, a number of phonetic decision trees
[34] are created, whose roots correspond to (binary) phonetic
features, for example the place or manner of articulation. Mul-
tiple BDPF trees are used to compensate for the fact that a sin-
gle tree may not fully discriminate all available phones, we use
eight BDPF trees whose roots are the most common phonetic
features [14]. Details about the generation of these BDPF trees
are described in ref. [16], see ref. [6] for the exact training proto-
col. Each BDPF tree is trained separately, during HMM-based
decoding, the state probability scores of the trees are averaged.

In order to allow a fair comparison between the frontends,
we use the same BDPF trees for both the GMM and the DNN
frontend [6] (note, though, that they are far more important for
the former than for the latter). We also remark that the GMM-
based criterion for the tree computation can be replaced by a
neural network based criterion [35].

DNN frontend Separate DNNs are trained for each BDPF
tree, each of which is set up as follows. We use three hidden
layers with 600 neurons, each of which is followed by a tanh
nonlinearity and Dropout with 50% dropout probability (see
section 5.1 for remarks on the optimal network architecture).
The final DNN output layer corresponds to the final states of
the respective BDPF tree. The DNN weights are initialized us-
ing a Gaussian distribution with a standard deviation of 0.1 and
trained with an ADAM optimizer [36] for a maximum of 500
epochs, using a minibatch size of 20 sentences, a multiclass
cross-entropy loss function, and early stopping based on the ac-
curacy on the test data of the source sessions (since we assume
that target labels are not available in practical scenarios).
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Figure 2: Optimal network topology for adversarial training,
with a common part (top), BDPF state classifier (bottom left,
only on source sessions), and session classifier (bottom right).
Note that the gradient of the sessions classifier is inverted, and
that the contribution of the adversarial part is configurable.

HMM backend As described above, the HMM backend
is not used or tuned during training. For decoding, it is used
with a trigram Broadcast News language model (evaluation set
perplexity = 24.24) [37]; as in previous experiments, we limit
the decoding vocabulary to the 108 words in the test set.

4.3. Domain-Adversarial Training

In order to achieve improved session independency, we fol-
low the Domain-Adversarial Training approach by Ganin and
Lemptsky [7]. This is a variant of multitask training, where two
loss functions are simultaneously optimized: The standard clas-
sifier loss (i.e. multi-class cross entropy) is optimized only on
data from the source domain, since only for this data training
targets are available. Each source training data batch is aug-
mented by an equal amount of randomly chosen data from the
target session (note that there is much more source data than
target data), and at an intermediate layer—in this study, the sec-
ond feedforward layer—we attach a further network which per-
forms framewise session classification. This is a variation of
the original setup, where the secondary classifier only attempts
to distinguish the source and target domains; for us it yielded
slightly better results. The secondary network follows a stan-
dard pattern; it is trained jointly with the main classifier, with a
configurable weight.

So far, this describes a joint classifier for two different
tasks (session classification and BDPF state classification). The
secondary network, however, is made adversarial by a simple
twist: The backpropagated gradient from the secondary network
is inverted where it is fed into the main branch. This causes
the lower (joint) part of the network to perform gradient ascent
on the session classification task, thus it learns to confuse ses-
sions instead of recognizing them. Figure 2 shows a graphical
overview of the system: The joint part is at the top, at the bottom
are word classifier (left) and speaker classifier (right).

5. Experiments and Results
Here we display and describe the results of our experiments.
We always report Word Error Rates (WER) on the target ses-
sions, for which no supervised training is performed. Results
are averaged over all sessions of the development dataset.

0%
10%
20%
30%
40%
50%
60%
70%

8 12 22 32 64 All No Lda

W
or

d 
E

rr
or

 R
at

e

LDA Cutoff

GMM Frontend DNN Frontend

Figure 3: Comparison of target session Word Error Rates
with GMM and DNN frontend, averaged over the development
dataset, for different LDA cutoff dimensions. GMM training
without LDA dimensionality reduction does not converge.

5.1. Optimal Baseline System

The first set of experiments deals with establishing our baseline
architecture, which might be different from [6] due to the larger
amount of training data. We first train a series of experiments
on the development dataset (see section 3) to validate the re-
sult from [6] that the LDA cutoff for the DNN frontend can be
chosen much higher than for the GMM frontend.

The experimental protocol is as follows: We first train
GMM systems with varying LDA cutoff (otherwise, there are
no further major parameters which need to be tuned). All sys-
tems are trained on the source sessions and tested on the target
session. The results can be seen in figure 3, which shows the
behavior reported in [6]: Below an LDA cutoff of 12, the WER
rises quickly; when the LDA cutoff is raised, one likewise sees
a slow degradation of the system. For the corpus used here, we
observe optimal results with an LDA cutoff of 12, so we use this
as our GMM baseline.

We now train DNN systems, using BDPF trees from the
GMM baseline system and the network architecture described
in section 4.2. Compared to the architecture used in [6], we have
introduced Dropout and consequently increased the number of
neurons per layer. From figure 3 it can be seen that an optimal
DNN system is obtained with no LDA preprocessing at all, with
a WER of 18.8%. The best GMM system achieves 30.6% WER.

We also experimented with network architecture variations.
The network setup from [6], which does not use Dropout, per-
forms slightly worse than the architecture described in section
4.2. By increasing or decreasing the number of neurons per
layer, or by adding another hidden layer, we likewise obtain
slightly increasing WERs; this may not necessarily be signifi-
cant, but it indicates that our settings are reasonable. A smaller
number of layers causes substantial accuracy degradation.

5.2. Adversarial training results

We now apply domain-adversarial training as follows. The ad-
versarial network is set up as described in section 4.3; after ini-
tial experiments we chose to use two hidden layers with tanh
nonlinearity and 100 neurons each, followed by a standard soft-
max layer. Dropout did not yield any improvement. The weight
of the adversarial part is set to 2.5 after 5 epochs, and to 5.0 af-
ter 10 epochs. This follows the suggestion to slowly “activate”
adversarial training [7].

Figure 4 displays the results of this experiment, subdivided
into the three sessions blocks of the development set: We see
that in all cases, the average Word Error Rate on the target
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Figure 4: Target session Word Error Rates with Adversarial
Training, averaged over the three session blocks of the devel-
opment dataset (see section 3 for details)

.

session decreases substantially. The average baseline WER
(18.8%) is reduced to 15.6% by adversarial training; this is an
improvement of 17.0% relative.

The WER reduction is reflected in an improved accuracy
of the underlying neural network frontend. Without adversarial
training, the average accuracy of the BDPF state recognizer on
the target session is 16.4%, averaged over all BDPF trees—a
decent result given that we have a recognition task with typi-
cally 400 - 500 classes. When adversarial training is applied,
the average accuracy rises to 21.9%, which is an improvement
of more than 30% relative. The DNN frontend accuracy and the
WER are closely related, for the systems without adversarial
training, they correlate with a factor of -0.87, with adversarial
training, the correlation is lower, at -0.63.

We finally consider the neural network layer to which the
adversarial network is attached. At that layer, the objective of
the adversarial network is to make the representations of data
from the different training sessions more confusable, to improve
the target classification accuracy. This can be evaluated with a
standard method: We take a session combination (from block
3 of speaker 2) for which adversarial training has a strong ef-
fect (WER 36% → 25%). For each of the underlying BDPF
classifier networks, we take the input data, compute its hidden
representation, and perform session classification on this data.
For this purpose we use a standard SVM with an RBF kernel;
the hidden layer data is randomly split into a training set and a
test set. We observe a clear trend: Without adversarial training,
the SVM accuracy on seven sessions, averaged over the BDPF
state classifiers, is 53%, with adversarial training this number
drops to 44%. Still, the data representations remain far more
different than for the tasks on which domain-adversarial train-
ing works best (consider for example figure 3 in [7]).

Table 2: Target session Word Error Rates on the held-out eval-
uation dataset.

Dataset
System Development Evaluation

GMM frontend 30.6% 41.4%
DNN frontend 18.8% 29.9%

DNN + adv. training 15.6% 28.5%

0%
10%
20%
30%
40%
50%
60%
70%

2-2 2-4 8-2

W
or

d 
E

rr
or

 R
at

e

Session Block

No Adv. Training With Adv. Training

Figure 5: Target session Word Error Rates with Adversarial
Training, averaged over the three session blocks of the evalu-
ation dataset

5.3. Evaluation

Finally, we verify our result on the held-back evaluation dataset,
using the best three systems which we have determined so far.
Table 2 summarizes the resulting Word Error Rates.

The characteristics of the evaluation dataset turn out to be
different from the development part: In particular, the baseline
WER for both the GMM frontend and the DNN frontend is sub-
stantially higher than for the development part. Yet, it is known
[14] that such variations are well within the normal range.

The effect of domain-adversarial training is lower than for
the development dataset, it amounts to 4.7% relative improve-
ment. This result is also reflected in a very small accuracy im-
provement of the DNN frontend: The average accuracy rises
from 17.2% to 17.4%. From the corresponding figure 5, we fi-
nally note that there is a strong discrepancy between the two
speakers: On the evaluation sessions of speaker 8, adversar-
ial training substantially improves the WER (from 15.9% to
9.7%), which is in line with the expectations from the devel-
opment dataset. On the sessions of speaker 2, many of which
show a generally lower baseline accuracy, we frequently see
no improvement at all. This is in line with the results on the
development dataset (see figure 4), where the greatest relative
improvement of more than 33% is also seen for speaker 8.

6. Conclusion
In this study we have shown that domain-adversarial training is
applicable to a state-of-the-art session-independent EMG-based
speech recognition system with a hybrid DNN + HMM archi-
tecture. Testing on a target session from which no transcribed
training data is used, we observed a relative Word Error Rate
reduction of 17.0% on the development dataset and 4.7% on the
evaluation dataset. This improvement is reflected in the accu-
racies of the underlying DNN frontends. However, it is also
observed that for different training session combinations, the
effect of the method varies drastically. The underlying reasons
which make certain systems more or less amenable to domain-
adversarial training are not yet known; further investigations are
required to shed light on this discrepancy.
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